Spaces:
Runtime error
Runtime error
File size: 13,429 Bytes
c4ce881 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
"""Utility functions of the UVQ model.
Copyright 2022 Google LLC
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
https://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import csv
import os
import subprocess
import tempfile
import numpy as np
from PIL import Image
import tensorflow as tf
from tensorflow.compat.v1 import gfile, logging, saved_model
from tensorflow.compat.v1 import ConfigProto, Session, Graph
# Explicitly set input size
VIDEO_HEIGHT = 720
VIDEO_WIDTH = 1280
VIDEO_FPS = 5
VIDEO_CHANNEL = 3
# Output feature size
DIM_HEIGHT_FEATURE = 16
DIM_WIDTH_FEATURE = 16
DIM_CHANNEL_FEATURE = 100
# ContentNet specs
INPUT_HEIGHT_CONTENT = 496
INPUT_WIDTH_CONTENT = 496
INPUT_CHANNEL_CONTENT = 3
DIM_LABEL_CONTENT = 3862
def extend_array(rgb, total_len):
"""Extends the byte array (or truncates) to be total_len"""
missing = total_len - len(rgb)
if missing < 0:
rgb = rgb[0 : total_len]
else:
rgb.extend(bytearray(missing))
return rgb
def load_video(filepath, video_length, transpose=False):
"""Load input video."""
# Rotate video if requested
if transpose:
transpose_param = 'transpose=1,'
else:
transpose_param = ''
# Sample at constant frame rate, and save as RGB24 (RGBRGB...)
fd, temp_filename = tempfile.mkstemp()
fd_small, temp_filename_small = tempfile.mkstemp()
cmd = (
'ffmpeg -i %s -filter_complex '
' "[0:v]%sscale=w=%d:h=%d:flags=bicubic:force_original_aspect_ratio=1,'
'pad=%d:%d:(ow-iw)/2:(oh-ih)/2,format=rgb24,split=2[out1][tmp],[tmp]scale=%d:%d:flags=bilinear[out2]"'
' -map [out1] -r %d -f rawvideo -pix_fmt rgb24 -y %s'
' -map [out2] -r %d -f rawvideo -pix_fmt rgb24 -y %s'
) % (filepath, transpose_param, VIDEO_WIDTH, VIDEO_HEIGHT,
VIDEO_WIDTH, VIDEO_HEIGHT, INPUT_WIDTH_CONTENT, INPUT_HEIGHT_CONTENT,
VIDEO_FPS, temp_filename, VIDEO_FPS, temp_filename_small)
try:
logging.info('Run with cmd:% s\n', cmd)
subprocess.check_output(cmd, stderr=subprocess.STDOUT, shell=True)
except subprocess.CalledProcessError as error:
logging.fatal('Run with cmd: %s \n terminated with return code %s\n%s',
cmd, str(error.returncode), error.output)
raise error
# For video, the entire video is divided into 1s chunks in 5 fps
with gfile.Open(temp_filename, 'rb') as rgb_file, gfile.Open(temp_filename_small, 'rb') as rgb_file_small:
single_frame_size = VIDEO_WIDTH * VIDEO_HEIGHT * VIDEO_CHANNEL
full_decode_size = video_length * VIDEO_FPS * single_frame_size
assert rgb_file.size() >= single_frame_size, f'Decoding failed to output a single frame: {rgb_file.size()} < {single_frame_size}'
if rgb_file.size() < full_decode_size:
logging.warn('Decoding may be truncated: %d bytes (%d frames) < %d bytes (%d frames),'
' or video length (%ds) may be too incorrect',
rgb_file.size(), rgb_file.size() / single_frame_size,
full_decode_size, full_decode_size / single_frame_size,
video_length)
rgb = extend_array(bytearray(rgb_file.read()), full_decode_size)
rgb_small = extend_array(bytearray(rgb_file_small.read()),
video_length * VIDEO_FPS * INPUT_WIDTH_CONTENT * INPUT_HEIGHT_CONTENT * VIDEO_CHANNEL)
video = (np.reshape(np.frombuffer(rgb, 'uint8'),
(video_length, int(VIDEO_FPS), VIDEO_HEIGHT, VIDEO_WIDTH, 3))/255.0 - 0.5) *2
video_resized = (np.reshape(np.frombuffer(rgb_small, 'uint8'),
(video_length, int(VIDEO_FPS), INPUT_HEIGHT_CONTENT, INPUT_WIDTH_CONTENT, 3))/255.0 - 0.5) *2
# Delete temp files
os.close(fd)
os.remove(temp_filename)
os.close(fd_small)
os.remove(temp_filename_small)
logging.info('Load %s done successfully.', filepath)
return video, video_resized
def generate_content_feature(video, model_path, input_node, output_nodes):
"""Extract features from ContentNet."""
with Session(graph=Graph(), config=ConfigProto(
allow_soft_placement=True, log_device_placement=False)) as sess:
saved_model.loader.load(
sess, [saved_model.tag_constants.SERVING], model_path)
label = np.ndarray((video.shape[0], DIM_LABEL_CONTENT), np.float32)
feature = np.ndarray((video.shape[0], DIM_HEIGHT_FEATURE,
DIM_WIDTH_FEATURE, DIM_CHANNEL_FEATURE), np.float32)
patch = np.ndarray((1, INPUT_HEIGHT_CONTENT, INPUT_WIDTH_CONTENT,
INPUT_CHANNEL_CONTENT), np.float32)
for k in range(video.shape[0]):
patch[0, :] = video[k, 0, :, :, :]
patch_feature, patch_label = sess.run(output_nodes,
feed_dict={input_node: patch})
feature[k, :, :, :] = patch_feature
label[k, :] = patch_label
return feature, label
def generate_subnet_feature(video, model_path, input_width, input_height,
input_fps, feature_width, feature_height,
feature_channel, label_dim, input_node,
output_nodes):
"""Extract features from CompresionNet or DistortionNet."""
with Session(graph=Graph(), config=ConfigProto(
allow_soft_placement=True, log_device_placement=False)) as sess:
saved_model.loader.load(
sess, [saved_model.tag_constants.SERVING], model_path)
num_h = int(VIDEO_HEIGHT / input_height)
num_w = int(VIDEO_WIDTH / input_width)
label = np.ndarray((video.shape[0], num_h, num_w, label_dim), np.float32)
feature = np.ndarray((video.shape[0], num_h * feature_height,
num_w * feature_width, feature_channel), np.float32)
if input_fps == 1:
patch = np.ndarray((1, input_height, input_width,
video.shape[-1]), np.float32)
else:
patch = np.ndarray((1, input_fps, input_height, input_width,
video.shape[-1]), np.float32)
for k in range(video.shape[0]):
for j in range(num_h):
for i in range(num_w):
if input_fps == 1:
patch[0, :] = video[k, 0, j * input_height:(j + 1) * input_height,
i * input_width:(i + 1) * input_width, :]
else:
patch[0, :] = video[k, :, j * input_height:(j + 1) * input_height,
i * input_width:(i + 1) * input_width, :]
patch_feature, patch_label = sess.run(output_nodes,
feed_dict={input_node: patch})
feature[k, j * feature_height:(j + 1) * feature_height, i *
feature_width:(i + 1) * feature_width, :] = patch_feature
label[k, j, i, :] = patch_label
return feature, label
def generate_features(video_id, video_length, filepath, model_dir, output_dir,
transpose=False):
"""Generate features from input video."""
video, video_resized = load_video(filepath, video_length, transpose)
feature_compression, label_compression = generate_subnet_feature(
video, '%s/compressionnet_baseline' % model_dir,
320, 180, 5, # input height, weight, fps,
4, 4, 100, 1, # feature map height, width, channels, and label_size
'input_orig:0',
['feature_layer_orig:0', 'compress_level_orig:0'])
feature_content, label_content = generate_content_feature(
video_resized, '%s/contentnet_baseline' % model_dir,
'map/TensorArrayV2Stack/TensorListStack:0',
['final_conv2d/Conv2D:0', 'class_confidence:0'])
feature_distortion, label_distortion = generate_subnet_feature(
video, '%s/distortionnet_baseline' % model_dir,
640, 360, 1, # input height, weight, fps,
8, 8, 100, 26, # feature map height, width, channels, and label_size
'input_images:0',
['feature_map:0', 'dist_type_prediction/dist_type_predictions:0'])
# Save features
fd, temp = tempfile.mkstemp()
feature_compression.astype('float32').tofile(temp)
out_feature = '%s/%s_feature_compression.binary' % (output_dir, video_id)
gfile.Copy(temp, out_feature, overwrite=True)
feature_content.astype('float32').tofile(temp)
out_feature = '%s/%s_feature_content.binary' % (output_dir, video_id)
gfile.Copy(temp, out_feature, overwrite=True)
feature_distortion.astype('float32').tofile(temp)
out_feature = '%s/%s_feature_distortion.binary' % (output_dir, video_id)
gfile.Copy(temp, out_feature, overwrite=True)
# Feature labels
np.savetxt(temp, label_compression.reshape(label_compression.shape[0], -1),
fmt='%0.3f', delimiter=',')
out_feature = '%s/%s_label_compression.csv' % (output_dir, video_id)
gfile.Copy(temp, out_feature, overwrite=True)
np.savetxt(temp, label_content.reshape(label_content.shape[0], -1),
fmt='%0.3f', delimiter=',')
out_feature = '%s/%s_label_content.csv' % (output_dir, video_id)
gfile.Copy(temp, out_feature, overwrite=True)
np.savetxt(temp, label_distortion.reshape(label_distortion.shape[0], -1),
fmt='%0.3f', delimiter=',')
out_feature = '%s/%s_label_distortion.csv' % (output_dir, video_id)
gfile.Copy(temp, out_feature, overwrite=True)
os.close(fd)
os.remove(temp)
def load_features(video_id, dim_time, feature_dir):
"""Load pre-generated features."""
input_compression_feature = '%s/%s_feature_compression.binary' % (
feature_dir, video_id)
with gfile.Open(input_compression_feature, 'rb') as input_file:
s = input_file.read()
with Session() as sess:
feature_1d = tf.io.decode_raw(s, out_type=tf.float32)
feature = tf.reshape(feature_1d,
[1, dim_time, DIM_HEIGHT_FEATURE,
DIM_WIDTH_FEATURE, DIM_CHANNEL_FEATURE])
feature_compression = sess.run(feature)
input_content_feature = '%s/%s_feature_content.binary' % (
feature_dir, video_id)
with gfile.Open(input_content_feature, 'rb') as input_file:
s = input_file.read()
with Session() as sess:
feature_1d = tf.io.decode_raw(s, out_type=tf.float32)
feature = tf.reshape(feature_1d,
[1, dim_time, DIM_HEIGHT_FEATURE,
DIM_WIDTH_FEATURE, DIM_CHANNEL_FEATURE])
feature_content = sess.run(feature)
input_distortion_feature = '%s/%s_feature_distortion.binary' % (
feature_dir, video_id)
with gfile.Open(input_distortion_feature, 'rb') as input_file:
s = input_file.read()
with Session() as sess:
feature_1d = tf.io.decode_raw(s, out_type=tf.float32)
feature = tf.reshape(feature_1d,
[1, dim_time, DIM_HEIGHT_FEATURE,
DIM_WIDTH_FEATURE, DIM_CHANNEL_FEATURE])
feature_distortion = sess.run(feature)
return feature_compression, feature_content, feature_distortion
def prediction(video_id, video_length, model_dir, feature_dir, output_dir):
"""Predict quality (MOS)."""
trainset = 'ytugc20s'
all_trainset_subindex = ['0', '1', '2', '3', '4']
all_feature = ['compression',
'content',
'distortion',
'compression_content',
'compression_distortion',
'content_distortion',
'compression_content_distortion',
]
aggregation_model = 'avgpool'
all_outputs = []
for feature in all_feature:
aggregated_mos = 0
for trainset_subindex in all_trainset_subindex:
model_name = '%s_%s_%s_%s' % (
trainset, trainset_subindex, aggregation_model, feature)
with Session(graph=Graph(), config=ConfigProto(
allow_soft_placement=True, log_device_placement=False)) as sess:
saved_model.loader.load(
sess, [saved_model.tag_constants.SERVING],
'%s/aggregationnet_baseline/%s' % (
model_dir, model_name))
[feature_compression, feature_content, feature_distortion
] = load_features(video_id, video_length, feature_dir)
feature_compression = feature_compression[
:, 0:video_length, :, :, :]
feature_content = feature_content[
:, 0:video_length, :, :, :]
feature_distortion = feature_distortion[
:, 0:video_length, :, :, :]
pred_mos = sess.run(
'Model/mos:0',
feed_dict={'feature_compression:0': feature_compression,
'feature_content:0': feature_content,
'feature_distortion:0': feature_distortion,
})
pred_mos = pred_mos[0][0]
aggregated_mos += pred_mos
aggregated_mos /= len(all_trainset_subindex)
all_outputs.append([video_id, feature, aggregated_mos])
fd, temp = tempfile.mkstemp()
with gfile.Open(temp, 'w') as f:
writer = csv.writer(f)
writer.writerows(all_outputs)
out_file = '%s/%s_uvq.csv' % (output_dir, video_id)
gfile.Copy(temp, out_file, overwrite=True)
os.close(fd)
os.remove(temp)
|