File size: 10,296 Bytes
c62dd62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import torch
import torch.nn as nn
import numpy as np
from torch.optim import AdamW
import torch.optim as optim
import itertools
from model.warplayer import warp
from torch.nn.parallel import DistributedDataParallel as DDP
from model.oldmodel.IFNet_HD import *
import torch.nn.functional as F
from model.loss import *

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
    return nn.Sequential(
        nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
                  padding=padding, dilation=dilation, bias=True),
        nn.PReLU(out_planes)
    )


def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
    return nn.Sequential(
        torch.nn.ConvTranspose2d(in_channels=in_planes, out_channels=out_planes,
                                 kernel_size=4, stride=2, padding=1, bias=True),
        nn.PReLU(out_planes)
    )

def conv_woact(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
    return nn.Sequential(
        nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
                  padding=padding, dilation=dilation, bias=True),
    )

class ResBlock(nn.Module):
    def __init__(self, in_planes, out_planes, stride=2):
        super(ResBlock, self).__init__()
        if in_planes == out_planes and stride == 1:
            self.conv0 = nn.Identity()
        else:
            self.conv0 = nn.Conv2d(in_planes, out_planes,
                                   3, stride, 1, bias=False)
        self.conv1 = conv(in_planes, out_planes, 3, stride, 1)
        self.conv2 = conv_woact(out_planes, out_planes, 3, 1, 1)
        self.relu1 = nn.PReLU(1)
        self.relu2 = nn.PReLU(out_planes)
        self.fc1 = nn.Conv2d(out_planes, 16, kernel_size=1, bias=False)
        self.fc2 = nn.Conv2d(16, out_planes, kernel_size=1, bias=False)

    def forward(self, x):
        y = self.conv0(x)
        x = self.conv1(x)
        x = self.conv2(x)
        w = x.mean(3, True).mean(2, True)
        w = self.relu1(self.fc1(w))
        w = torch.sigmoid(self.fc2(w))
        x = self.relu2(x * w + y)
        return x

c = 32

class ContextNet(nn.Module):
    def __init__(self):
        super(ContextNet, self).__init__()
        self.conv0 = conv(3, c, 3, 2, 1)
        self.conv1 = ResBlock(c, c)
        self.conv2 = ResBlock(c, 2*c)
        self.conv3 = ResBlock(2*c, 4*c)
        self.conv4 = ResBlock(4*c, 8*c)

    def forward(self, x, flow):
        x = self.conv0(x)
        x = self.conv1(x)
        flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False) * 0.5
        f1 = warp(x, flow)
        x = self.conv2(x)
        flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear",
                             align_corners=False) * 0.5
        f2 = warp(x, flow)
        x = self.conv3(x)
        flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear",
                             align_corners=False) * 0.5
        f3 = warp(x, flow)
        x = self.conv4(x)
        flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear",
                             align_corners=False) * 0.5
        f4 = warp(x, flow)
        return [f1, f2, f3, f4]


class FusionNet(nn.Module):
    def __init__(self):
        super(FusionNet, self).__init__()
        self.conv0 = conv(8, c, 3, 2, 1)
        self.down0 = ResBlock(c, 2*c)
        self.down1 = ResBlock(4*c, 4*c)
        self.down2 = ResBlock(8*c, 8*c)
        self.down3 = ResBlock(16*c, 16*c)
        self.up0 = deconv(32*c, 8*c)
        self.up1 = deconv(16*c, 4*c)
        self.up2 = deconv(8*c, 2*c)
        self.up3 = deconv(4*c, c)
        self.conv = nn.Conv2d(c, 16, 3, 1, 1)
        self.up4 = nn.PixelShuffle(2)

    def forward(self, img0, img1, flow, c0, c1, flow_gt):
        warped_img0 = warp(img0, flow)
        warped_img1 = warp(img1, -flow)
        if flow_gt == None:
            warped_img0_gt, warped_img1_gt = None, None
        else:
            warped_img0_gt = warp(img0, flow_gt[:, :2])
            warped_img1_gt = warp(img1, flow_gt[:, 2:4])
        x = self.conv0(torch.cat((warped_img0, warped_img1, flow), 1))
        s0 = self.down0(x)
        s1 = self.down1(torch.cat((s0, c0[0], c1[0]), 1))
        s2 = self.down2(torch.cat((s1, c0[1], c1[1]), 1))
        s3 = self.down3(torch.cat((s2, c0[2], c1[2]), 1))
        x = self.up0(torch.cat((s3, c0[3], c1[3]), 1))
        x = self.up1(torch.cat((x, s2), 1))
        x = self.up2(torch.cat((x, s1), 1))
        x = self.up3(torch.cat((x, s0), 1))
        x = self.up4(self.conv(x))
        return x, warped_img0, warped_img1, warped_img0_gt, warped_img1_gt


class Model:
    def __init__(self, local_rank=-1):
        self.flownet = IFNet()
        self.contextnet = ContextNet()
        self.fusionnet = FusionNet()
        self.device()
        self.optimG = AdamW(itertools.chain(
            self.flownet.parameters(),
            self.contextnet.parameters(),
            self.fusionnet.parameters()), lr=1e-6, weight_decay=1e-4)
        self.schedulerG = optim.lr_scheduler.CyclicLR(
            self.optimG, base_lr=1e-6, max_lr=1e-3, step_size_up=8000, cycle_momentum=False)
        self.epe = EPE()
        self.ter = Ternary()
        self.sobel = SOBEL()
        if local_rank != -1:
            self.flownet = DDP(self.flownet, device_ids=[
                               local_rank], output_device=local_rank)
            self.contextnet = DDP(self.contextnet, device_ids=[
                                  local_rank], output_device=local_rank)
            self.fusionnet = DDP(self.fusionnet, device_ids=[
                                 local_rank], output_device=local_rank)

    def train(self):
        self.flownet.train()
        self.contextnet.train()
        self.fusionnet.train()

    def eval(self):
        self.flownet.eval()
        self.contextnet.eval()
        self.fusionnet.eval()

    def device(self):
        self.flownet.to(device)
        self.contextnet.to(device)
        self.fusionnet.to(device)

    def load_model(self, path, rank):
        def convert(param):
            if rank == -1:
                return {
                    k.replace("module.", ""): v
                    for k, v in param.items()
                    if "module." in k
                }
            else:
                return param
        if rank <= 0:
            self.flownet.load_state_dict(
                convert(torch.load('{}/flownet.pkl'.format(path), map_location=device)))
            self.contextnet.load_state_dict(
                convert(torch.load('{}/contextnet.pkl'.format(path), map_location=device)))
            self.fusionnet.load_state_dict(
                convert(torch.load('{}/unet.pkl'.format(path), map_location=device)))

    def save_model(self, path, rank):
        if rank == 0:
            torch.save(self.flownet.state_dict(), '{}/flownet.pkl'.format(path))
            torch.save(self.contextnet.state_dict(), '{}/contextnet.pkl'.format(path))
            torch.save(self.fusionnet.state_dict(), '{}/unet.pkl'.format(path))

    def predict(self, imgs, flow, training=True, flow_gt=None):
        img0 = imgs[:, :3]
        img1 = imgs[:, 3:]
        c0 = self.contextnet(img0, flow)
        c1 = self.contextnet(img1, -flow)
        flow = F.interpolate(flow, scale_factor=2.0, mode="bilinear",
                             align_corners=False) * 2.0
        refine_output, warped_img0, warped_img1, warped_img0_gt, warped_img1_gt = self.fusionnet(
            img0, img1, flow, c0, c1, flow_gt)
        res = torch.sigmoid(refine_output[:, :3]) * 2 - 1
        mask = torch.sigmoid(refine_output[:, 3:4])
        merged_img = warped_img0 * mask + warped_img1 * (1 - mask)
        pred = merged_img + res
        pred = torch.clamp(pred, 0, 1)
        if training:
            return pred, mask, merged_img, warped_img0, warped_img1, warped_img0_gt, warped_img1_gt
        else:
            return pred

    def inference(self, img0, img1, scale=1.0):
        imgs = torch.cat((img0, img1), 1)
        flow, _ = self.flownet(imgs, scale)
        return self.predict(imgs, flow, training=False)

    def update(self, imgs, gt, learning_rate=0, mul=1, training=True, flow_gt=None):
        for param_group in self.optimG.param_groups:
            param_group['lr'] = learning_rate
        if training:
            self.train()
        else:
            self.eval()
        flow, flow_list = self.flownet(imgs)
        pred, mask, merged_img, warped_img0, warped_img1, warped_img0_gt, warped_img1_gt = self.predict(
            imgs, flow, flow_gt=flow_gt)
        loss_ter = self.ter(pred, gt).mean()
        if training:
            with torch.no_grad():
                loss_flow = torch.abs(warped_img0_gt - gt).mean()
                loss_mask = torch.abs(
                    merged_img - gt).sum(1, True).float().detach()
                loss_mask = F.interpolate(loss_mask, scale_factor=0.5, mode="bilinear",
                                          align_corners=False).detach()
                flow_gt = (F.interpolate(flow_gt, scale_factor=0.5, mode="bilinear",
                                         align_corners=False) * 0.5).detach()
            loss_cons = 0
            for i in range(3):
                loss_cons += self.epe(flow_list[i], flow_gt[:, :2], 1)
                loss_cons += self.epe(-flow_list[i], flow_gt[:, 2:4], 1)
            loss_cons = loss_cons.mean() * 0.01
        else:
            loss_cons = torch.tensor([0])
            loss_flow = torch.abs(warped_img0 - gt).mean()
            loss_mask = 1
        loss_l1 = (((pred - gt) ** 2 + 1e-6) ** 0.5).mean()
        if training:
            self.optimG.zero_grad()
            loss_G = loss_l1 + loss_cons + loss_ter
            loss_G.backward()
            self.optimG.step()
        return pred, merged_img, flow, loss_l1, loss_flow, loss_cons, loss_ter, loss_mask


if __name__ == '__main__':
    img0 = torch.zeros(3, 3, 256, 256).float().to(device)
    img1 = torch.tensor(np.random.normal(
        0, 1, (3, 3, 256, 256))).float().to(device)
    imgs = torch.cat((img0, img1), 1)
    model = Model()
    model.eval()
    print(model.inference(imgs).shape)