File size: 11,841 Bytes
86239b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a067809
 
 
 
f9088de
 
 
 
 
a067809
f9088de
 
 
 
 
 
 
 
 
 
 
 
a067809
 
8412687
a067809
 
86239b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import os
import time
from datetime import datetime

import folium
import pandas as pd
import streamlit as st
from huggingface_hub import HfApi
from streamlit_folium import st_folium
from src.utils import add_latlng_col

from src.text_content import (
    COLOR_MAPPING,
    CREDITS_TEXT,
    HEADERS_MAPPING,
    ICON_MAPPING,
    INTRO_TEXT_AR,
    INTRO_TEXT_EN,
    INTRO_TEXT_FR,
    LOGO,
    REVIEW_TEXT,
    SLOGAN,
)
from src.utils import init_map, parse_gg_sheet

TOKEN = os.environ.get("HF_TOKEN", None)
REQUESTS_URL = "https://docs.google.com/spreadsheets/d/1gYoBBiBo1L18IVakHkf3t1fOGvHWb23loadyFZUeHJs/edit#gid=966953708"
INTERVENTIONS_URL = (
    "https://docs.google.com/spreadsheets/d/1eXOTqunOWWP8FRdENPs4cU9ulISm4XZWYJJNR1-SrwY/edit#gid=2089222765"
)
api = HfApi(TOKEN)


# Initialize Streamlit Config
st.set_page_config(layout="wide", initial_sidebar_state="collapsed", page_icon="🤝", page_title="Nt3awnou نتعاونو")

# Initialize States
if "sleep_time" not in st.session_state:
    st.session_state.sleep_time = 2
if "auto_refresh" not in st.session_state:
    st.session_state.auto_refresh = False

auto_refresh = st.sidebar.checkbox("Auto Refresh?", st.session_state.auto_refresh)
if auto_refresh:
    number = st.sidebar.number_input("Refresh rate in seconds", value=st.session_state.sleep_time)
    st.session_state.sleep_time = number


# Streamlit functions
def display_interventions(interventions_df, m):
    """Display NGO interventions on the map"""
    for index, row in interventions_df.iterrows():
        status = (
            "Done ✅"
            if row[interventions_df.columns[5]] != "Intervention prévue dans le futur / Planned future intervention"
            else "Planned ⌛"
        )
        color_mk = (
            "green"
            if row[interventions_df.columns[5]] != "Intervention prévue dans le futur / Planned future intervention"
            else "pink"
        )
        intervention_type = row[interventions_df.columns[6]].split("/")[0].strip()
        org = row[interventions_df.columns[1]]
        city = row[interventions_df.columns[9]]
        date = row[interventions_df.columns[4]]
        intervention_info = f"<b>Status:</b> {status}<br><b>Org:</b> {org}<br><b>Intervention:</b> {intervention_type}<br><b>📅 Date:</b> {date}"
        if row["latlng"] is None:
            continue
        folium.Marker(
            location=row["latlng"],
            tooltip=city,
            popup=folium.Popup(intervention_info, max_width=300),
            icon=folium.Icon(color=color_mk),
        ).add_to(m)


def show_requests(filtered_df, m):
    """Display victim requests on the map"""
    for index, row in filtered_df.iterrows():
        request_type = row["ما هي احتياجاتك؟ (أضفها إذا لم يتم ذكرها)"]
        long_lat = row[
            "هل يمكنك تقديم الإحداثيات الدقيقة للموقع؟ (ادا كنت لا توجد بعين المكان) متلاً \n31.01837503440344, -6.781405948842175"
        ]
        maps_url = f"https://maps.google.com/?q={long_lat}"
        display_text = f'<b>Request Type:</b> {request_type}<br><b>Id:</b> {row["id"]}<br><a href="{maps_url}" target="_blank" rel="noopener noreferrer"><b>Google Maps</b></a>'
        icon_name = ICON_MAPPING.get(request_type, "info-sign")
        if row["latlng"] is None:
            continue

        folium.Marker(
            location=row["latlng"],
            tooltip=row["  لأي  جماعة / قيادة / دوار تنتمون ؟"]
            if not pd.isna(row["  لأي  جماعة / قيادة / دوار تنتمون ؟"])
            else None,
            popup=folium.Popup(display_text, max_width=300),
            icon=folium.Icon(color=COLOR_MAPPING.get(request_type, "blue"), icon=icon_name),
        ).add_to(m)


def display_google_sheet_tables(data_url):
    """Display the google sheet tables for requests and interventions"""
    st.markdown(
        f"""<iframe src="{data_url}" width="100%" height="600px"></iframe>""",
        unsafe_allow_html=True,
    )


def display_dataframe(df, drop_cols, data_url, search_id=True, status=False):
    """Display the dataframe in a table"""
    col_1, col_2 = st.columns([1, 1])

    with col_1:
        query = st.text_input(
            "🔍 Search for information / بحث عن المعلومات",
            key=f"search_requests_{int(search_id)}",
        )
    with col_2:
        if search_id:
            id_number = st.number_input(
                "🔍 Search for an id / بحث عن رقم",
                min_value=0,
                max_value=len(filtered_df),
                value=0,
                step=1,
            )
        if status:
            selected_status = st.selectbox(
                "🗓️ Status / حالة",
                ["all / الكل", "Done / تم", "Planned / مخطط لها"],
                key="status",
            )

    if query:
        # Filtering the dataframe based on the query
        mask = df.apply(lambda row: row.astype(str).str.contains(query).any(), axis=1)
        display_df = df[mask]
    else:
        display_df = df

    display_df = display_df.drop(drop_cols, axis=1)

    if search_id and id_number:
        display_df = display_df[display_df["id"] == id_number]

    if status:
        target = "Pouvez-vous nous préciser si vous êtes déjà intervenus ou si vous prévoyez de le faire | Tell us if you already made the intervention, or if you're planning to do it"
        if selected_status == "Done / تم":
            display_df = display_df[display_df[target] == "Intervention déjà passée / Past intevention"]

        elif selected_status == "Planned / مخطط لها":
            display_df = display_df[display_df[target] != "Intervention déjà passée / Past intevention"]

    st.dataframe(display_df, height=500)
    st.markdown(
        f"To view the full Google Sheet for advanced filtering go to: {data_url} **لعرض الورقة كاملة، اذهب إلى**"
    )
    # if we want to check hidden contact information
    st.markdown(
        f"We are hiding contact information to protect the privacy of the victims. If you are an NGO and want to contact the victims, please contact us at nt3awnoumorocco@gmail.com",
    )
    # arabic needs rtl
    st.markdown(
        f"""
                <div style="text-align: left;">
                <a href="mailto:nt3awnoumorocco@gmail.com">nt3awnoumorocco@gmail.com</a> نحن نخفي معلومات الاتصال لحماية خصوصية الضحايا. إذا كنت جمعية وتريد الاتصال بالضحايا، يرجى الاتصال بنا على 
                </div>
                """,
        unsafe_allow_html=True,
    )


def id_review_submission():
    """Id review submission form"""
    st.subheader("🔍 Review of requests")
    st.markdown(REVIEW_TEXT)

    id_to_review = st.number_input("Enter id / أدخل الرقم", min_value=0, max_value=len(df), value=0, step=1)
    reason_for_review = st.text_area("Explain why / أدخل سبب المراجعة")
    if st.button("Submit / أرسل"):
        if reason_for_review == "":
            st.error("Please enter a reason / الرجاء إدخال سبب")
        else:
            filename = f"review_id_{id_to_review}_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.txt"
            with open(filename, "w") as f:
                f.write(f"id: {id_to_review}, explanation: {reason_for_review}\n")
            api.upload_file(
                path_or_fileobj=filename,
                path_in_repo=filename,
                repo_id="nt3awnou/review_requests",
                repo_type="dataset",
            )
            st.success("Submitted at https://huggingface.co/datasets/nt3awnou/review_requests/ تم الإرسال")


# Logo and Title
st.markdown(LOGO, unsafe_allow_html=True)
# st.title("Nt3awnou نتعاونو")
st.markdown(SLOGAN, unsafe_allow_html=True)

# Load data and initialize map with plugins
df = parse_gg_sheet(REQUESTS_URL)
df = add_latlng_col(df, process_column=15)
interventions_df = parse_gg_sheet(INTERVENTIONS_URL)
interventions_df = add_latlng_col(interventions_df, process_column=12)

# Get current location: 

js_code = """
function getLocation() {
    navigator.geolocation.getCurrentPosition(function (position) {
        document.getElementById("localisation").value = JSON.stringify({
            latitude: position.coords.latitude,
            longitude: position.coords.longitude
        });
        document.getElementById("localisation").dispatchEvent(new Event('input', { 'bubbles': true }));
    }, function () {
        document.getElementById("localisation").value = JSON.stringify({
            latitude: null,
            longitude: null
        });
        document.getElementById("localisation").dispatchEvent(new Event('input', { 'bubbles': true }));
    });
}
getLocation();
"""
st.markdown(f"<script>{js_code}</script>", unsafe_allow_html=True)

# Hidden field to store the JavaScript variable
current_localisation = st.text_input("localisation", "", key="localisation", label_visibility="hidden")

m = init_map(current_localisation=current_localisation)

# Selection of requests
options = [
    "إغاثة",
    "مساعدة طبية",
    "مأوى",
    "طعام وماء",
    "مخاطر (تسرب الغاز، تلف في الخدمات العامة...)",
]
selected_options = []

# with tab_en:
#     st.markdown("👉 **Choose request type**")
# with tab_ar:
#     st.markdown("👉 **اختر نوع الطلب**")
# with tab_fr:
#     st.markdown("👉 **Choisissez le type de demande**")

st.markdown("👉 **Choose request type | Choissisez le type de demande | اختر نوع الطلب**")
col1, col2, col3, col4, col5 = st.columns([2, 3, 2, 3, 4])
cols = [col1, col2, col3, col4, col5]

for i, option in enumerate(options):
    checked = cols[i].checkbox(HEADERS_MAPPING[option], value=True)
    if checked:
        selected_options.append(option)

df["id"] = df.index
filtered_df = df[df["ما هي احتياجاتك؟ (أضفها إذا لم يتم ذكرها)"].isin(selected_options)]
selected_headers = [HEADERS_MAPPING[request] for request in selected_options]

# Selection of interventions
show_interventions = st.checkbox(
    "Display Interventions | عرض عمليات المساعدة | Afficher les interventions",
    value=True,
)

if show_interventions:
    # print(interventions_df.columns)
    display_interventions(interventions_df, m)

# Show requests
show_requests(filtered_df, m)

st_data = st_folium(m, use_container_width=True)
tab_ar, tab_en, tab_fr = st.tabs(["العربية", "English", "Français"])


with tab_en:
    st.markdown(INTRO_TEXT_EN, unsafe_allow_html=True)
with tab_ar:
    st.markdown(INTRO_TEXT_AR, unsafe_allow_html=True)
with tab_fr:
    st.markdown(INTRO_TEXT_FR, unsafe_allow_html=True)

# Requests table
st.divider()
st.subheader("📝 **Table of requests / جدول الطلبات**")
drop_cols = [
    "(عند الامكان) رقم هاتف شخص موجود في عين المكان",
    "الرجاء الضغط على الرابط التالي لمعرفة موقعك إذا كان متاحا",
    "GeoStamp",
    "GeoCode",
    "GeoAddress",
    "Status",
]
display_dataframe(filtered_df, drop_cols, REQUESTS_URL, search_id=True)

# Interventions table
st.divider()
st.subheader("📝 **Table of interventions / جدول التدخلات**")
display_dataframe(
    interventions_df,
    [], # We show NGOs contact information
    INTERVENTIONS_URL,
    search_id=False,
    status=True,
)

# Submit an id for review
st.divider()
id_review_submission()


# Credits
st.markdown(
    CREDITS_TEXT,
    unsafe_allow_html=True,
)
if auto_refresh:
    time.sleep(number)
    st.experimental_rerun()