File size: 1,344 Bytes
7708d0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import numpy as np
import torch
import torch.nn as nn

class ResidualConvUnit(nn.Module):
    def __init__(self, features):
        super().__init__()

        self.conv1 = nn.Conv2d(
            features, features, kernel_size=3, stride=1, padding=1, bias=True)
        self.conv2 = nn.Conv2d(
            features, features, kernel_size=3, stride=1, padding=1, bias=True)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        """Forward pass.
        Args:
            x (tensor): input
        Returns:
            tensor: output
        """
        out = self.relu(x)
        out = self.conv1(out)
        out = self.relu(out)
        out = self.conv2(out)
        return out + x

class Fusion(nn.Module):
    def __init__(self, resample_dim):
        super(Fusion, self).__init__()
        self.res_conv1 = ResidualConvUnit(resample_dim)
        self.res_conv2 = ResidualConvUnit(resample_dim)
        
    def forward(self, x, previous_stage=None):
        if previous_stage == None:
            previous_stage = torch.zeros_like(x)
        output_stage1 = self.res_conv1(x)
        output_stage1 += previous_stage
        output_stage2 = self.res_conv2(output_stage1)
        output_stage2 = nn.functional.interpolate(output_stage2, scale_factor=2, mode="bilinear", align_corners=True)
        return output_stage2