File size: 18,441 Bytes
3e2ffcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
#!/usr/bin/env python3
"""
OnCall.ai System - Retrieval Relevance Evaluator (Metric 3)
===========================================================

Evaluates retrieval relevance using cosine similarity from retrieval.py
Automatic evaluation based on existing similarity scores with optional LLM sampling

Author: YanBo Chen  
Date: 2025-08-04
"""

import json
import os
import sys
from typing import Dict, List, Any
from datetime import datetime
from pathlib import Path
import re
import numpy as np

# Add project path
current_dir = Path(__file__).parent
project_root = current_dir.parent
src_dir = project_root / "src"
sys.path.insert(0, str(src_dir))

# Import existing system components
try:
    from user_prompt import UserPromptProcessor
    from retrieval import BasicRetrievalSystem
    from llm_clients import llm_Med42_70BClient
except ImportError as e:
    print(f"❌ Import failed: {e}")
    print("Please ensure running from project root directory")
    sys.exit(1)


class RelevanceEvaluator:
    """Retrieval relevance evaluator using cosine similarity - automatic evaluation"""
    
    def __init__(self):
        """Initialize system components for relevance testing"""
        print("πŸ”§ Initializing Relevance Evaluator...")
        
        # Initialize required components
        self.llm_client = llm_Med42_70BClient()
        self.retrieval_system = BasicRetrievalSystem()
        self.user_prompt_processor = UserPromptProcessor(
            llm_client=self.llm_client,
            retrieval_system=self.retrieval_system
        )
        
        # Results accumulation
        self.relevance_results = []
        
        print("βœ… Relevance Evaluator initialization complete")
    
    def evaluate_single_relevance(self, query: str, category: str = "unknown") -> Dict[str, Any]:
        """
        Evaluate retrieval relevance for a single query
        
        Uses existing cosine similarity scores from retrieval.py
        
        Args:
            query: Medical query to test
            category: Query category (diagnosis/treatment/mixed)
        """
        print(f"πŸ” Testing relevance for: {query[:50]}...")
        print(f"πŸ“‹ Category: {category}")
        
        try:
            # Step 1: Extract condition for search query construction
            condition_result = self.user_prompt_processor.extract_condition_keywords(query)
            
            # Step 2: Perform retrieval (same as latency_evaluator.py)
            search_query = f"{condition_result.get('emergency_keywords', '')} {condition_result.get('treatment_keywords', '')}".strip()
            if not search_query:
                search_query = condition_result.get('condition', query)
            
            retrieval_start = datetime.now()
            retrieval_results = self.retrieval_system.search(search_query, top_k=5)
            retrieval_time = (datetime.now() - retrieval_start).total_seconds()
            
            # Step 3: Extract similarity scores from retrieval results
            processed_results = retrieval_results.get('processed_results', [])
            
            if not processed_results:
                result = {
                    "query": query,
                    "category": category,
                    "search_query": search_query,
                    "retrieval_success": False,
                    "average_relevance": 0.0,
                    "relevance_scores": [],
                    "retrieved_count": 0,
                    "retrieval_time": retrieval_time,
                    "error": "No retrieval results",
                    "timestamp": datetime.now().isoformat()
                }
                
                self.relevance_results.append(result)
                print(f"   ❌ No retrieval results found")
                return result
            
            # Extract cosine similarity scores
            similarity_scores = []
            retrieval_details = []
            
            for i, doc_result in enumerate(processed_results):
                # Get similarity score (may be stored as 'distance', 'similarity_score', or 'score')
                similarity = (
                    doc_result.get('distance', 0.0) or 
                    doc_result.get('similarity_score', 0.0) or
                    doc_result.get('score', 0.0)
                )
                
                similarity_scores.append(similarity)
                
                retrieval_details.append({
                    "doc_index": i,
                    "similarity_score": similarity,
                    "content_snippet": doc_result.get('content', '')[:100] + "...",
                    "doc_type": doc_result.get('type', 'unknown'),
                    "source": doc_result.get('source', 'unknown')
                })
            
            # Calculate relevance metrics
            average_relevance = sum(similarity_scores) / len(similarity_scores)
            max_relevance = max(similarity_scores)
            min_relevance = min(similarity_scores)
            
            # Count high-relevance results (threshold: 0.2 based on evaluation_instruction.md)
            high_relevance_count = sum(1 for score in similarity_scores if score >= 0.2)
            high_relevance_ratio = high_relevance_count / len(similarity_scores)
            
            result = {
                "query": query,
                "category": category,
                "search_query": search_query,
                "retrieval_success": True,
                "average_relevance": average_relevance,
                "max_relevance": max_relevance,
                "min_relevance": min_relevance,
                "relevance_scores": similarity_scores,
                "high_relevance_count": high_relevance_count,
                "high_relevance_ratio": high_relevance_ratio,
                "retrieved_count": len(processed_results),
                "retrieval_time": retrieval_time,
                "retrieval_details": retrieval_details,
                "meets_threshold": average_relevance >= 0.2,
                "timestamp": datetime.now().isoformat()
            }
            
            # Store result
            self.relevance_results.append(result)
            
            print(f"   βœ… Retrieval: {len(processed_results)} documents")
            print(f"   πŸ“Š Average Relevance: {average_relevance:.3f}")
            print(f"   πŸ“ˆ High Relevance (β‰₯0.2): {high_relevance_count}/{len(processed_results)} ({high_relevance_ratio:.1%})")
            print(f"   🎯 Threshold: {'βœ… Met' if result['meets_threshold'] else '❌ Not Met'}")
            print(f"   ⏱️ Retrieval Time: {retrieval_time:.3f}s")
            
            return result
            
        except Exception as e:
            error_result = {
                "query": query,
                "category": category,
                "retrieval_success": False,
                "average_relevance": 0.0,
                "error": str(e),
                "timestamp": datetime.now().isoformat()
            }
            
            self.relevance_results.append(error_result)
            print(f"   ❌ Relevance evaluation failed: {e}")
            
            return error_result
    
    def parse_queries_from_file(self, filepath: str) -> Dict[str, List[Dict]]:
        """Parse queries from file with category labels"""
        print(f"πŸ“ Reading queries from file: {filepath}")
        
        try:
            with open(filepath, 'r', encoding='utf-8') as f:
                content = f.read()
            
            # Parse queries with category labels
            queries_by_category = {
                "diagnosis": [],
                "treatment": [], 
                "mixed": []
            }
            
            lines = content.strip().split('\n')
            
            for line in lines:
                line = line.strip()
                if not line:
                    continue
                
                # Parse format: "1.diagnosis: query text"
                match = re.match(r'^\d+\.(diagnosis|treatment|mixed/complicated|mixed):\s*(.+)', line, re.IGNORECASE)
                if match:
                    category_raw = match.group(1).lower()
                    query_text = match.group(2).strip()
                    
                    # Normalize category name
                    if category_raw in ['mixed/complicated', 'mixed']:
                        category = 'mixed'
                    else:
                        category = category_raw
                    
                    if category in queries_by_category and len(query_text) > 15:
                        queries_by_category[category].append({
                            "text": query_text,
                            "category": category
                        })
            
            print(f"πŸ“‹ Parsed queries by category:")
            for category, category_queries in queries_by_category.items():
                print(f"  {category.capitalize()}: {len(category_queries)} queries")
            
            return queries_by_category
            
        except Exception as e:
            print(f"❌ Failed to read file: {e}")
            return {"error": f"Failed to read file: {e}"}
    
    def calculate_relevance_statistics(self) -> Dict[str, Any]:
        """Calculate relevance statistics by category"""
        category_stats = {}
        all_successful_results = []
        
        # Group results by category
        results_by_category = {
            "diagnosis": [],
            "treatment": [],
            "mixed": []
        }
        
        for result in self.relevance_results:
            category = result.get('category', 'unknown')
            if category in results_by_category:
                results_by_category[category].append(result)
                if result.get('retrieval_success'):
                    all_successful_results.append(result)
        
        # Calculate statistics for each category
        for category, results in results_by_category.items():
            successful_results = [r for r in results if r.get('retrieval_success')]
            
            if successful_results:
                avg_relevance = sum(r['average_relevance'] for r in successful_results) / len(successful_results)
                relevance_scores = [r['average_relevance'] for r in successful_results]
                avg_retrieval_time = sum(r.get('retrieval_time', 0) for r in successful_results) / len(successful_results)
                
                category_stats[category] = {
                    "average_relevance": avg_relevance,
                    "max_relevance": max(relevance_scores),
                    "min_relevance": min(relevance_scores),
                    "successful_retrievals": len(successful_results),
                    "total_queries": len(results),
                    "success_rate": len(successful_results) / len(results),
                    "average_retrieval_time": avg_retrieval_time,
                    "meets_threshold": avg_relevance >= 0.2,
                    "individual_relevance_scores": relevance_scores
                }
            else:
                category_stats[category] = {
                    "average_relevance": 0.0,
                    "max_relevance": 0.0,
                    "min_relevance": 0.0,
                    "successful_retrievals": 0,
                    "total_queries": len(results),
                    "success_rate": 0.0,
                    "average_retrieval_time": 0.0,
                    "meets_threshold": False,
                    "individual_relevance_scores": []
                }
        
        # Calculate overall statistics
        if all_successful_results:
            all_relevance_scores = [r['average_relevance'] for r in all_successful_results]
            overall_stats = {
                "average_relevance": sum(all_relevance_scores) / len(all_relevance_scores),
                "max_relevance": max(all_relevance_scores),
                "min_relevance": min(all_relevance_scores),
                "successful_retrievals": len(all_successful_results),
                "total_queries": len(self.relevance_results),
                "success_rate": len(all_successful_results) / len(self.relevance_results),
                "meets_threshold": (sum(all_relevance_scores) / len(all_relevance_scores)) >= 0.2,
                "target_compliance": (sum(all_relevance_scores) / len(all_relevance_scores)) >= 0.25
            }
        else:
            overall_stats = {
                "average_relevance": 0.0,
                "max_relevance": 0.0,
                "min_relevance": 0.0,
                "successful_retrievals": 0,
                "total_queries": len(self.relevance_results),
                "success_rate": 0.0,
                "meets_threshold": False,
                "target_compliance": False
            }
        
        return {
            "category_results": category_stats,
            "overall_results": overall_stats,
            "timestamp": datetime.now().isoformat()
        }
    
    def save_relevance_statistics(self, filename: str = None) -> str:
        """Save relevance statistics for chart generation"""
        stats = self.calculate_relevance_statistics()
        
        if filename is None:
            timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
            filename = f"relevance_statistics_{timestamp}.json"
        
        # Ensure results directory exists
        results_dir = Path(__file__).parent / "results"
        results_dir.mkdir(exist_ok=True)
        
        filepath = results_dir / filename
        
        with open(filepath, 'w', encoding='utf-8') as f:
            json.dump(stats, f, indent=2, ensure_ascii=False)
        
        print(f"πŸ“Š Relevance statistics saved to: {filepath}")
        return str(filepath)
    
    def save_relevance_details(self, filename: str = None) -> str:
        """Save detailed relevance results"""
        if filename is None:
            timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
            filename = f"relevance_details_{timestamp}.json"
        
        # Ensure results directory exists
        results_dir = Path(__file__).parent / "results"
        results_dir.mkdir(exist_ok=True)
        
        filepath = results_dir / filename
        
        # Create comprehensive relevance data
        relevance_data = {
            "evaluation_metadata": {
                "total_queries": len(self.relevance_results),
                "successful_retrievals": len([r for r in self.relevance_results if r.get('retrieval_success')]),
                "timestamp": datetime.now().isoformat(),
                "evaluator_type": "retrieval_relevance",
                "threshold_used": 0.2
            },
            "relevance_results": self.relevance_results
        }
        
        with open(filepath, 'w', encoding='utf-8') as f:
            json.dump(relevance_data, f, indent=2, ensure_ascii=False)
        
        print(f"πŸ“ Relevance details saved to: {filepath}")
        return str(filepath)


# Independent execution interface
if __name__ == "__main__":
    """Independent relevance evaluation interface"""
    
    print("πŸ“Š OnCall.ai Relevance Evaluator - Retrieval Relevance Analysis")
    
    if len(sys.argv) > 1:
        query_file = sys.argv[1]
    else:
        # Default to evaluation/pre_user_query_evaluate.txt
        query_file = Path(__file__).parent / "pre_user_query_evaluate.txt"
    
    if not os.path.exists(query_file):
        print(f"❌ Query file not found: {query_file}")
        print("Usage: python relevance_evaluator.py [query_file.txt]")
        sys.exit(1)
    
    # Initialize evaluator
    evaluator = RelevanceEvaluator()
    
    # Parse queries from file
    queries_by_category = evaluator.parse_queries_from_file(str(query_file))
    
    if "error" in queries_by_category:
        print(f"❌ Failed to parse queries: {queries_by_category['error']}")
        sys.exit(1)
    
    # Test relevance for each query
    print(f"\nπŸ§ͺ Retrieval Relevance Testing")
    
    for category, queries in queries_by_category.items():
        if not queries:
            continue
            
        print(f"\nπŸ“‚ Testing {category.upper()} relevance:")
        
        for i, query_info in enumerate(queries):
            query_text = query_info['text']
            
            # Test relevance
            result = evaluator.evaluate_single_relevance(query_text, category)
            
            # Pause between queries to avoid rate limits
            if i < len(queries) - 1:
                print(f"   ⏳ Pausing 3s before next query...")
                import time
                time.sleep(3)
        
        # Pause between categories
        if category != list(queries_by_category.keys())[-1]:
            print(f"\n⏳ Pausing 5s before next category...")
            import time
            time.sleep(5)
    
    # Generate and save results
    print(f"\nπŸ“Š Generating relevance analysis...")
    
    # Save statistics and details
    stats_path = evaluator.save_relevance_statistics()
    details_path = evaluator.save_relevance_details()
    
    # Print final summary
    stats = evaluator.calculate_relevance_statistics()
    category_results = stats['category_results']
    overall_results = stats['overall_results']
    
    print(f"\nπŸ“Š === RELEVANCE EVALUATION SUMMARY ===")
    print(f"Overall Performance:")
    print(f"   Average Relevance: {overall_results['average_relevance']:.3f}")
    print(f"   Retrieval Success Rate: {overall_results['success_rate']:.1%}")
    print(f"   0.2 Threshold: {'βœ… Met' if overall_results['meets_threshold'] else '❌ Not Met'}")
    print(f"   0.25 Target: {'βœ… Met' if overall_results['target_compliance'] else '❌ Not Met'}")
    
    print(f"\nCategory Breakdown:")
    for category, cat_stats in category_results.items():
        if cat_stats['total_queries'] > 0:
            print(f"   {category.capitalize()}: {cat_stats['average_relevance']:.3f} "
                  f"({cat_stats['successful_retrievals']}/{cat_stats['total_queries']}) "
                  f"[{cat_stats['average_retrieval_time']:.3f}s avg]")
    
    print(f"\nβœ… Relevance evaluation complete!")
    print(f"πŸ“Š Statistics: {stats_path}")
    print(f"πŸ“ Details: {details_path}")