Spaces:
Running
Running
File size: 18,441 Bytes
3e2ffcb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
#!/usr/bin/env python3
"""
OnCall.ai System - Retrieval Relevance Evaluator (Metric 3)
===========================================================
Evaluates retrieval relevance using cosine similarity from retrieval.py
Automatic evaluation based on existing similarity scores with optional LLM sampling
Author: YanBo Chen
Date: 2025-08-04
"""
import json
import os
import sys
from typing import Dict, List, Any
from datetime import datetime
from pathlib import Path
import re
import numpy as np
# Add project path
current_dir = Path(__file__).parent
project_root = current_dir.parent
src_dir = project_root / "src"
sys.path.insert(0, str(src_dir))
# Import existing system components
try:
from user_prompt import UserPromptProcessor
from retrieval import BasicRetrievalSystem
from llm_clients import llm_Med42_70BClient
except ImportError as e:
print(f"β Import failed: {e}")
print("Please ensure running from project root directory")
sys.exit(1)
class RelevanceEvaluator:
"""Retrieval relevance evaluator using cosine similarity - automatic evaluation"""
def __init__(self):
"""Initialize system components for relevance testing"""
print("π§ Initializing Relevance Evaluator...")
# Initialize required components
self.llm_client = llm_Med42_70BClient()
self.retrieval_system = BasicRetrievalSystem()
self.user_prompt_processor = UserPromptProcessor(
llm_client=self.llm_client,
retrieval_system=self.retrieval_system
)
# Results accumulation
self.relevance_results = []
print("β
Relevance Evaluator initialization complete")
def evaluate_single_relevance(self, query: str, category: str = "unknown") -> Dict[str, Any]:
"""
Evaluate retrieval relevance for a single query
Uses existing cosine similarity scores from retrieval.py
Args:
query: Medical query to test
category: Query category (diagnosis/treatment/mixed)
"""
print(f"π Testing relevance for: {query[:50]}...")
print(f"π Category: {category}")
try:
# Step 1: Extract condition for search query construction
condition_result = self.user_prompt_processor.extract_condition_keywords(query)
# Step 2: Perform retrieval (same as latency_evaluator.py)
search_query = f"{condition_result.get('emergency_keywords', '')} {condition_result.get('treatment_keywords', '')}".strip()
if not search_query:
search_query = condition_result.get('condition', query)
retrieval_start = datetime.now()
retrieval_results = self.retrieval_system.search(search_query, top_k=5)
retrieval_time = (datetime.now() - retrieval_start).total_seconds()
# Step 3: Extract similarity scores from retrieval results
processed_results = retrieval_results.get('processed_results', [])
if not processed_results:
result = {
"query": query,
"category": category,
"search_query": search_query,
"retrieval_success": False,
"average_relevance": 0.0,
"relevance_scores": [],
"retrieved_count": 0,
"retrieval_time": retrieval_time,
"error": "No retrieval results",
"timestamp": datetime.now().isoformat()
}
self.relevance_results.append(result)
print(f" β No retrieval results found")
return result
# Extract cosine similarity scores
similarity_scores = []
retrieval_details = []
for i, doc_result in enumerate(processed_results):
# Get similarity score (may be stored as 'distance', 'similarity_score', or 'score')
similarity = (
doc_result.get('distance', 0.0) or
doc_result.get('similarity_score', 0.0) or
doc_result.get('score', 0.0)
)
similarity_scores.append(similarity)
retrieval_details.append({
"doc_index": i,
"similarity_score": similarity,
"content_snippet": doc_result.get('content', '')[:100] + "...",
"doc_type": doc_result.get('type', 'unknown'),
"source": doc_result.get('source', 'unknown')
})
# Calculate relevance metrics
average_relevance = sum(similarity_scores) / len(similarity_scores)
max_relevance = max(similarity_scores)
min_relevance = min(similarity_scores)
# Count high-relevance results (threshold: 0.2 based on evaluation_instruction.md)
high_relevance_count = sum(1 for score in similarity_scores if score >= 0.2)
high_relevance_ratio = high_relevance_count / len(similarity_scores)
result = {
"query": query,
"category": category,
"search_query": search_query,
"retrieval_success": True,
"average_relevance": average_relevance,
"max_relevance": max_relevance,
"min_relevance": min_relevance,
"relevance_scores": similarity_scores,
"high_relevance_count": high_relevance_count,
"high_relevance_ratio": high_relevance_ratio,
"retrieved_count": len(processed_results),
"retrieval_time": retrieval_time,
"retrieval_details": retrieval_details,
"meets_threshold": average_relevance >= 0.2,
"timestamp": datetime.now().isoformat()
}
# Store result
self.relevance_results.append(result)
print(f" β
Retrieval: {len(processed_results)} documents")
print(f" π Average Relevance: {average_relevance:.3f}")
print(f" π High Relevance (β₯0.2): {high_relevance_count}/{len(processed_results)} ({high_relevance_ratio:.1%})")
print(f" π― Threshold: {'β
Met' if result['meets_threshold'] else 'β Not Met'}")
print(f" β±οΈ Retrieval Time: {retrieval_time:.3f}s")
return result
except Exception as e:
error_result = {
"query": query,
"category": category,
"retrieval_success": False,
"average_relevance": 0.0,
"error": str(e),
"timestamp": datetime.now().isoformat()
}
self.relevance_results.append(error_result)
print(f" β Relevance evaluation failed: {e}")
return error_result
def parse_queries_from_file(self, filepath: str) -> Dict[str, List[Dict]]:
"""Parse queries from file with category labels"""
print(f"π Reading queries from file: {filepath}")
try:
with open(filepath, 'r', encoding='utf-8') as f:
content = f.read()
# Parse queries with category labels
queries_by_category = {
"diagnosis": [],
"treatment": [],
"mixed": []
}
lines = content.strip().split('\n')
for line in lines:
line = line.strip()
if not line:
continue
# Parse format: "1.diagnosis: query text"
match = re.match(r'^\d+\.(diagnosis|treatment|mixed/complicated|mixed):\s*(.+)', line, re.IGNORECASE)
if match:
category_raw = match.group(1).lower()
query_text = match.group(2).strip()
# Normalize category name
if category_raw in ['mixed/complicated', 'mixed']:
category = 'mixed'
else:
category = category_raw
if category in queries_by_category and len(query_text) > 15:
queries_by_category[category].append({
"text": query_text,
"category": category
})
print(f"π Parsed queries by category:")
for category, category_queries in queries_by_category.items():
print(f" {category.capitalize()}: {len(category_queries)} queries")
return queries_by_category
except Exception as e:
print(f"β Failed to read file: {e}")
return {"error": f"Failed to read file: {e}"}
def calculate_relevance_statistics(self) -> Dict[str, Any]:
"""Calculate relevance statistics by category"""
category_stats = {}
all_successful_results = []
# Group results by category
results_by_category = {
"diagnosis": [],
"treatment": [],
"mixed": []
}
for result in self.relevance_results:
category = result.get('category', 'unknown')
if category in results_by_category:
results_by_category[category].append(result)
if result.get('retrieval_success'):
all_successful_results.append(result)
# Calculate statistics for each category
for category, results in results_by_category.items():
successful_results = [r for r in results if r.get('retrieval_success')]
if successful_results:
avg_relevance = sum(r['average_relevance'] for r in successful_results) / len(successful_results)
relevance_scores = [r['average_relevance'] for r in successful_results]
avg_retrieval_time = sum(r.get('retrieval_time', 0) for r in successful_results) / len(successful_results)
category_stats[category] = {
"average_relevance": avg_relevance,
"max_relevance": max(relevance_scores),
"min_relevance": min(relevance_scores),
"successful_retrievals": len(successful_results),
"total_queries": len(results),
"success_rate": len(successful_results) / len(results),
"average_retrieval_time": avg_retrieval_time,
"meets_threshold": avg_relevance >= 0.2,
"individual_relevance_scores": relevance_scores
}
else:
category_stats[category] = {
"average_relevance": 0.0,
"max_relevance": 0.0,
"min_relevance": 0.0,
"successful_retrievals": 0,
"total_queries": len(results),
"success_rate": 0.0,
"average_retrieval_time": 0.0,
"meets_threshold": False,
"individual_relevance_scores": []
}
# Calculate overall statistics
if all_successful_results:
all_relevance_scores = [r['average_relevance'] for r in all_successful_results]
overall_stats = {
"average_relevance": sum(all_relevance_scores) / len(all_relevance_scores),
"max_relevance": max(all_relevance_scores),
"min_relevance": min(all_relevance_scores),
"successful_retrievals": len(all_successful_results),
"total_queries": len(self.relevance_results),
"success_rate": len(all_successful_results) / len(self.relevance_results),
"meets_threshold": (sum(all_relevance_scores) / len(all_relevance_scores)) >= 0.2,
"target_compliance": (sum(all_relevance_scores) / len(all_relevance_scores)) >= 0.25
}
else:
overall_stats = {
"average_relevance": 0.0,
"max_relevance": 0.0,
"min_relevance": 0.0,
"successful_retrievals": 0,
"total_queries": len(self.relevance_results),
"success_rate": 0.0,
"meets_threshold": False,
"target_compliance": False
}
return {
"category_results": category_stats,
"overall_results": overall_stats,
"timestamp": datetime.now().isoformat()
}
def save_relevance_statistics(self, filename: str = None) -> str:
"""Save relevance statistics for chart generation"""
stats = self.calculate_relevance_statistics()
if filename is None:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"relevance_statistics_{timestamp}.json"
# Ensure results directory exists
results_dir = Path(__file__).parent / "results"
results_dir.mkdir(exist_ok=True)
filepath = results_dir / filename
with open(filepath, 'w', encoding='utf-8') as f:
json.dump(stats, f, indent=2, ensure_ascii=False)
print(f"π Relevance statistics saved to: {filepath}")
return str(filepath)
def save_relevance_details(self, filename: str = None) -> str:
"""Save detailed relevance results"""
if filename is None:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"relevance_details_{timestamp}.json"
# Ensure results directory exists
results_dir = Path(__file__).parent / "results"
results_dir.mkdir(exist_ok=True)
filepath = results_dir / filename
# Create comprehensive relevance data
relevance_data = {
"evaluation_metadata": {
"total_queries": len(self.relevance_results),
"successful_retrievals": len([r for r in self.relevance_results if r.get('retrieval_success')]),
"timestamp": datetime.now().isoformat(),
"evaluator_type": "retrieval_relevance",
"threshold_used": 0.2
},
"relevance_results": self.relevance_results
}
with open(filepath, 'w', encoding='utf-8') as f:
json.dump(relevance_data, f, indent=2, ensure_ascii=False)
print(f"π Relevance details saved to: {filepath}")
return str(filepath)
# Independent execution interface
if __name__ == "__main__":
"""Independent relevance evaluation interface"""
print("π OnCall.ai Relevance Evaluator - Retrieval Relevance Analysis")
if len(sys.argv) > 1:
query_file = sys.argv[1]
else:
# Default to evaluation/pre_user_query_evaluate.txt
query_file = Path(__file__).parent / "pre_user_query_evaluate.txt"
if not os.path.exists(query_file):
print(f"β Query file not found: {query_file}")
print("Usage: python relevance_evaluator.py [query_file.txt]")
sys.exit(1)
# Initialize evaluator
evaluator = RelevanceEvaluator()
# Parse queries from file
queries_by_category = evaluator.parse_queries_from_file(str(query_file))
if "error" in queries_by_category:
print(f"β Failed to parse queries: {queries_by_category['error']}")
sys.exit(1)
# Test relevance for each query
print(f"\nπ§ͺ Retrieval Relevance Testing")
for category, queries in queries_by_category.items():
if not queries:
continue
print(f"\nπ Testing {category.upper()} relevance:")
for i, query_info in enumerate(queries):
query_text = query_info['text']
# Test relevance
result = evaluator.evaluate_single_relevance(query_text, category)
# Pause between queries to avoid rate limits
if i < len(queries) - 1:
print(f" β³ Pausing 3s before next query...")
import time
time.sleep(3)
# Pause between categories
if category != list(queries_by_category.keys())[-1]:
print(f"\nβ³ Pausing 5s before next category...")
import time
time.sleep(5)
# Generate and save results
print(f"\nπ Generating relevance analysis...")
# Save statistics and details
stats_path = evaluator.save_relevance_statistics()
details_path = evaluator.save_relevance_details()
# Print final summary
stats = evaluator.calculate_relevance_statistics()
category_results = stats['category_results']
overall_results = stats['overall_results']
print(f"\nπ === RELEVANCE EVALUATION SUMMARY ===")
print(f"Overall Performance:")
print(f" Average Relevance: {overall_results['average_relevance']:.3f}")
print(f" Retrieval Success Rate: {overall_results['success_rate']:.1%}")
print(f" 0.2 Threshold: {'β
Met' if overall_results['meets_threshold'] else 'β Not Met'}")
print(f" 0.25 Target: {'β
Met' if overall_results['target_compliance'] else 'β Not Met'}")
print(f"\nCategory Breakdown:")
for category, cat_stats in category_results.items():
if cat_stats['total_queries'] > 0:
print(f" {category.capitalize()}: {cat_stats['average_relevance']:.3f} "
f"({cat_stats['successful_retrievals']}/{cat_stats['total_queries']}) "
f"[{cat_stats['average_retrieval_time']:.3f}s avg]")
print(f"\nβ
Relevance evaluation complete!")
print(f"π Statistics: {stats_path}")
print(f"π Details: {details_path}")
|