File size: 6,556 Bytes
e8e478e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
from typing import Callable, List, Optional
import torch
from torch import Tensor
from .vision_transformer_utils import _log_api_usage_once
interpolate = torch.nn.functional.interpolate
# This is not in nn
class FrozenBatchNorm2d(torch.nn.Module):
"""
BatchNorm2d where the batch statistics and the affine parameters are fixed
Args:
num_features (int): Number of features ``C`` from an expected input of size ``(N, C, H, W)``
eps (float): a value added to the denominator for numerical stability. Default: 1e-5
"""
def __init__(
self,
num_features: int,
eps: float = 1e-5,
):
super().__init__()
_log_api_usage_once(self)
self.eps = eps
self.register_buffer("weight", torch.ones(num_features))
self.register_buffer("bias", torch.zeros(num_features))
self.register_buffer("running_mean", torch.zeros(num_features))
self.register_buffer("running_var", torch.ones(num_features))
def _load_from_state_dict(
self,
state_dict: dict,
prefix: str,
local_metadata: dict,
strict: bool,
missing_keys: List[str],
unexpected_keys: List[str],
error_msgs: List[str],
):
num_batches_tracked_key = prefix + "num_batches_tracked"
if num_batches_tracked_key in state_dict:
del state_dict[num_batches_tracked_key]
super()._load_from_state_dict(
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
)
def forward(self, x: Tensor) -> Tensor:
# move reshapes to the beginning
# to make it fuser-friendly
w = self.weight.reshape(1, -1, 1, 1)
b = self.bias.reshape(1, -1, 1, 1)
rv = self.running_var.reshape(1, -1, 1, 1)
rm = self.running_mean.reshape(1, -1, 1, 1)
scale = w * (rv + self.eps).rsqrt()
bias = b - rm * scale
return x * scale + bias
def __repr__(self) -> str:
return f"{self.__class__.__name__}({self.weight.shape[0]}, eps={self.eps})"
class ConvNormActivation(torch.nn.Sequential):
"""
Configurable block used for Convolution-Normalzation-Activation blocks.
Args:
in_channels (int): Number of channels in the input image
out_channels (int): Number of channels produced by the Convolution-Normalzation-Activation block
kernel_size: (int, optional): Size of the convolving kernel. Default: 3
stride (int, optional): Stride of the convolution. Default: 1
padding (int, tuple or str, optional): Padding added to all four sides of the input. Default: None, in wich case it will calculated as ``padding = (kernel_size - 1) // 2 * dilation``
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolutiuon layer. If ``None`` this layer wont be used. Default: ``torch.nn.BatchNorm2d``
activation_layer (Callable[..., torch.nn.Module], optinal): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer wont be used. Default: ``torch.nn.ReLU``
dilation (int): Spacing between kernel elements. Default: 1
inplace (bool): Parameter for the activation layer, which can optionally do the operation in-place. Default ``True``
bias (bool, optional): Whether to use bias in the convolution layer. By default, biases are included if ``norm_layer is None``.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int = 3,
stride: int = 1,
padding: Optional[int] = None,
groups: int = 1,
norm_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.BatchNorm2d,
activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU,
dilation: int = 1,
inplace: Optional[bool] = True,
bias: Optional[bool] = None,
) -> None:
if padding is None:
padding = (kernel_size - 1) // 2 * dilation
if bias is None:
bias = norm_layer is None
layers = [
torch.nn.Conv2d(
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation=dilation,
groups=groups,
bias=bias,
)
]
if norm_layer is not None:
layers.append(norm_layer(out_channels))
if activation_layer is not None:
params = {} if inplace is None else {"inplace": inplace}
layers.append(activation_layer(**params))
super().__init__(*layers)
_log_api_usage_once(self)
self.out_channels = out_channels
class SqueezeExcitation(torch.nn.Module):
"""
This block implements the Squeeze-and-Excitation block from https://arxiv.org/abs/1709.01507 (see Fig. 1).
Parameters ``activation``, and ``scale_activation`` correspond to ``delta`` and ``sigma`` in in eq. 3.
Args:
input_channels (int): Number of channels in the input image
squeeze_channels (int): Number of squeeze channels
activation (Callable[..., torch.nn.Module], optional): ``delta`` activation. Default: ``torch.nn.ReLU``
scale_activation (Callable[..., torch.nn.Module]): ``sigma`` activation. Default: ``torch.nn.Sigmoid``
"""
def __init__(
self,
input_channels: int,
squeeze_channels: int,
activation: Callable[..., torch.nn.Module] = torch.nn.ReLU,
scale_activation: Callable[..., torch.nn.Module] = torch.nn.Sigmoid,
) -> None:
super().__init__()
_log_api_usage_once(self)
self.avgpool = torch.nn.AdaptiveAvgPool2d(1)
self.fc1 = torch.nn.Conv2d(input_channels, squeeze_channels, 1)
self.fc2 = torch.nn.Conv2d(squeeze_channels, input_channels, 1)
self.activation = activation()
self.scale_activation = scale_activation()
def _scale(self, input: Tensor) -> Tensor:
scale = self.avgpool(input)
scale = self.fc1(scale)
scale = self.activation(scale)
scale = self.fc2(scale)
return self.scale_activation(scale)
def forward(self, input: Tensor) -> Tensor:
scale = self._scale(input)
return scale * input
|