Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,886 Bytes
426f305 20d9496 5f4fb45 426f305 20d9496 426f305 3ca495f 426f305 3ca495f 5f4fb45 34e4bd2 426f305 20d9496 426f305 3ca495f 426f305 5f4fb45 426f305 3ca495f 426f305 20d9496 426f305 20d9496 426f305 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import spaces
import io
# Initialize the Qwen model and tokenizer
model_name = "Qwen/Qwen2.5-Coder-7B-Instruct"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Function to generate README and documentation
@spaces.GPU
def generate_documentation(code_input):
prompt = f"Generate README for the following code:\n\n{code_input}"
messages = [
{"role": "system", "content": "You are CodeDocify, a highly efficient and intelligent assistant designed to analyze code and generate comprehensive, clear, and concise documentation. Your purpose is to help developers by producing well-structured README files and detailed explanations of their code. You aim to simplify complex code into easily understandable documentation, ensuring that your responses are accurate, professional, and easy to follow."},
{"role": "user", "content": prompt}
]
# Prepare inputs for the model
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# Generate the documentation
generated_ids = model.generate(**model_inputs, max_new_tokens=4000)
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]
documentation = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(documentation)
return documentation
# Gradio interface
def process_code(code_input):
documentation = generate_documentation(code_input)
readme_file = io.BytesIO()
readme_file.write(documentation.encode('utf-8'))
readme_file.seek(0)
return documentation, readme_file
# Set up the Gradio app with Bootstrap, icons, and smiley
with gr.Blocks(css=".container { font-family: 'Roboto', sans-serif; } .btn-primary { background-color: #007bff; } .icon { margin-right: 10px; }") as app:
gr.Markdown("""
#Code Documentation Generator
Paste your code below, and the app will generate the Documentation for you.
""")
with gr.Row():
code_input = gr.Textbox(lines=10, label="Paste your code here", placeholder="Enter your code...", show_label=False, elem_classes="form-control")
with gr.Row():
generate_button = gr.Button("Generate Documentation", elem_classes="btn btn-primary")
with gr.Row():
output_text = gr.Markdown(label="Generated Documentation")
download_button = gr.File(label="Download README.md")
# Bind function to button click
generate_button.click(process_code, inputs=code_input, outputs=[output_text, download_button])
# Launch the Gradio app
app.launch()
|