File size: 18,325 Bytes
14c8ffd
 
 
 
 
 
 
 
 
 
 
 
25b584d
14c8ffd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25b584d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14c8ffd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25b584d
 
14c8ffd
 
 
 
 
25b584d
 
14c8ffd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25b584d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14c8ffd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f7d294
25b584d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f7d294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25b584d
4f7d294
14c8ffd
 
 
 
 
 
 
25b584d
14c8ffd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f7d294
 
14c8ffd
4f7d294
 
14c8ffd
 
 
25b584d
14c8ffd
 
 
25b584d
14c8ffd
 
 
 
 
25b584d
14c8ffd
25b584d
 
 
 
 
 
 
 
 
14c8ffd
 
 
25b584d
14c8ffd
25b584d
 
 
 
 
 
 
 
 
14c8ffd
 
25b584d
 
14c8ffd
25b584d
 
 
 
 
 
14c8ffd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25b584d
 
 
 
14c8ffd
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
import sys
sys.path.append('./')

from typing import Tuple

import os
import cv2
import math
import torch
import random
import numpy as np
import argparse
import pandas as pd

import PIL
from PIL import Image

import diffusers
from diffusers.utils import load_image
from diffusers.models import ControlNetModel
from diffusers import LCMScheduler

from huggingface_hub import hf_hub_download

import insightface
from insightface.app import FaceAnalysis

from style_template import styles
from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline
from model_util import load_models_xl, get_torch_device, torch_gc

import os

# try:
#     # Send a GET request to the URL
#     response = requests.get("https://storage.googleapis.com/idfy-gff-public/idfy-gff-public%40idfy-eve-ml-training.iam.gserviceaccount.com.json")

#     # Raise an exception if the request was unsuccessful
#     response.raise_for_status()

#     # Save the file to the specified path
#     with open("serviceaccount.json", 'wb') as file:
#         file.write(response.content)

#     print(f"Service account JSON file successfully downloaded")
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "serviceaccount.json"

# except requests.exceptions.RequestException as e:
#     print(f"Failed to download the service account JSON file: {e}")



# global variable
MAX_SEED = np.iinfo(np.int32).max
device = get_torch_device()
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Watercolor"

# Load face encoder
app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))

# Path to InstantID models
face_adapter = f'./checkpoints/ip-adapter.bin'
controlnet_path = f'./checkpoints/ControlNetModel'

# Load pipeline
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=dtype)

logo = Image.open("./gradio_demo/watermark.png")
logo = logo.resize((100, 100))

from cv2 import imencode
import base64

import gradio as gr
from google.cloud import storage
from io import BytesIO


def main(pretrained_model_name_or_path="wangqixun/YamerMIX_v8", enable_lcm_arg=False):

    if pretrained_model_name_or_path.endswith(
            ".ckpt"
        ) or pretrained_model_name_or_path.endswith(".safetensors"):
            scheduler_kwargs = hf_hub_download(
                repo_id="wangqixun/YamerMIX_v8",
                subfolder="scheduler",
                filename="scheduler_config.json",
            )

            (tokenizers, text_encoders, unet, _, vae) = load_models_xl(
                pretrained_model_name_or_path=pretrained_model_name_or_path,
                scheduler_name=None,
                weight_dtype=dtype,
            )

            scheduler = diffusers.EulerDiscreteScheduler.from_config(scheduler_kwargs)
            pipe = StableDiffusionXLInstantIDPipeline(
                vae=vae,
                text_encoder=text_encoders[0],
                text_encoder_2=text_encoders[1],
                tokenizer=tokenizers[0],
                tokenizer_2=tokenizers[1],
                unet=unet,
                scheduler=scheduler,
                controlnet=controlnet,
            ).to(device)

    else:
        pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
            pretrained_model_name_or_path,
            controlnet=controlnet,
            torch_dtype=dtype,
            safety_checker=None,
            feature_extractor=None,
        ).to(device)

        pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(pipe.scheduler.config)

    pipe.load_ip_adapter_instantid(face_adapter)
    # load and disable LCM
    pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
    pipe.disable_lora()
    
    def remove_tips():
        return gr.update(visible=False)

    def convert_from_cv2_to_image(img: np.ndarray) -> Image:
        return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))

    def convert_from_image_to_cv2(img: Image) -> np.ndarray:
        return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)

    def run_for_prompts1(face_file,style,progress=gr.Progress(track_tqdm=True)):
        # if email != "":
        p,n = styles.get(style, styles.get(STYLE_NAMES[1]))
        return generate_image(face_file, p[0], n)
        # else:
            # raise gr.Error("Email ID is compulsory")
    def run_for_prompts2(face_file,style,progress=gr.Progress(track_tqdm=True)):
        # if email != "":
        p,n = styles.get(style, styles.get(STYLE_NAMES[1]))
        return generate_image(face_file, p[1], n)
    def run_for_prompts3(face_file,style,progress=gr.Progress(track_tqdm=True)):
        # if email != "":
        p,n = styles.get(style, styles.get(STYLE_NAMES[1]))
        return generate_image(face_file, p[2], n)
    def run_for_prompts4(face_file,style,progress=gr.Progress(track_tqdm=True)):
        # if email != "":
        p,n = styles.get(style, styles.get(STYLE_NAMES[1]))
        return generate_image(face_file, p[3], n)
        
    def upload_pil_image_to_gcs(image, destination_blob_name):
        bucket_name="idfy-gff-public"
        # Convert PIL image to byte stream
        image_byte_array = BytesIO()
        image.save(image_byte_array, format='PNG')  # Save image in its original format
        image_byte_array.seek(0)

        # Initialize a GCP client
        storage_client = storage.Client()

        # Get the bucket
        bucket = storage_client.bucket(bucket_name)

        # Create a blob object from the filename
        blob = bucket.blob(destination_blob_name)

        # Upload the image to GCS
        blob.upload_from_file(image_byte_array, content_type=f'image/png')

    def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]):
        stickwidth = 4
        limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
        kps = np.array(kps)

        w, h = image_pil.size
        out_img = np.zeros([h, w, 3])

        for i in range(len(limbSeq)):
            index = limbSeq[i]
            color = color_list[index[0]]

            x = kps[index][:, 0]
            y = kps[index][:, 1]
            length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
            angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
            polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
            out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
        out_img = (out_img * 0.6).astype(np.uint8)

        for idx_kp, kp in enumerate(kps):
            color = color_list[idx_kp]
            x, y = kp
            out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)

        out_img_pil = Image.fromarray(out_img.astype(np.uint8))
        return out_img_pil

    def resize_img(input_image, max_side=1280, min_side=1280, size=None, 
                pad_to_max_side=True, mode=PIL.Image.BILINEAR, base_pixel_number=64):

            w, h = input_image.size
            if size is not None:
                w_resize_new, h_resize_new = size
            else:
                ratio = min_side / min(h, w)
                w, h = round(ratio*w), round(ratio*h)
                ratio = max_side / max(h, w)
                input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
                w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
                h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
            input_image = input_image.resize([w_resize_new, h_resize_new], mode)

            if pad_to_max_side:
                res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
                offset_x = (max_side - w_resize_new) // 2
                offset_y = (max_side - h_resize_new) // 2
                res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
                input_image = Image.fromarray(res)
            return input_image

    # def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
    #     p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    #     return p.replace("{prompt}", positive), n + ' ' + negative
    
    def store_images(email, gallery1, gallery2, gallery3, gallery4,consent,style):
        if not email:
            raise gr.Error("Email Id not provided")
        if not consent:
            raise gr.Error("Consent not provided")
        for i, img in enumerate([gallery1, gallery2, gallery3, gallery4], start=1):
            try:
                if isinstance(img, np.ndarray):
                    img = Image.fromarray(img)
                dest = f'{email}/img{i}@{style}.png'
                upload_pil_image_to_gcs(img,dest)
            except Exception as e:
                print()
        gr.Info("Thankyou!! Your avatar is on the way to your inbox")
        return None,None,None,None,None
    
    def add_watermark(image, watermark=logo, opacity=128, position="bottom_right", padding=10):
        # Convert NumPy array to PIL Image if needed
        if isinstance(image, np.ndarray):
            image = Image.fromarray(image)

        if isinstance(watermark, np.ndarray):
            watermark = Image.fromarray(watermark)

        # Convert images to 'RGBA' mode to handle transparency
        image = image.convert("RGBA")
        watermark = watermark.convert("RGBA")

        # Adjust the watermark opacity
        watermark = watermark.copy()
        watermark.putalpha(opacity)

        # Calculate the position for the watermark
        if position == "bottom_right":
            x = image.width - watermark.width - padding
            y = image.height - watermark.height - padding
        elif position == "bottom_left":
            x = padding
            y = image.height - watermark.height - padding
        elif position == "top_right":
            x = image.width - watermark.width - padding
            y = padding
        elif position == "top_left":
            x = padding
            y = padding
        else:
            raise ValueError("Unsupported position. Choose from 'bottom_right', 'bottom_left', 'top_right', 'top_left'.")

        # Paste the watermark onto the image
        image.paste(watermark, (x, y), watermark)

        # Convert back to 'RGB' if the original image was not 'RGBA'
        if image.mode != "RGBA":
            image = image.convert("RGB")

        # return resize_img(image)
        return image

    def generate_image(face_image,prompt,negative_prompt):
        pose_image_path = None
        # prompt = "superman"
        enable_LCM = False
        identitynet_strength_ratio = 0.90
        adapter_strength_ratio = 0.60
        num_steps = 15
        guidance_scale = 5
        seed = random.randint(0, MAX_SEED)
        enhance_face_region = True
        if enable_LCM:
            pipe.enable_lora()
            pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
        else:
            pipe.disable_lora()
            pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(pipe.scheduler.config)
    
        if face_image is None:
            raise gr.Error(f"Cannot find any input face image! Please upload the face image")
        face_image = resize_img(face_image)
        face_image_cv2 = convert_from_image_to_cv2(face_image)
        height, width, _ = face_image_cv2.shape
        
        # Extract face features
        face_info = app.get(face_image_cv2)
        
        if len(face_info) == 0:
            raise gr.Error(f"Cannot find any face in the image! Please upload another person image")
        
        face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1]  # only use the maximum face
        face_emb = face_info['embedding']
        face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info['kps'])
        
        if pose_image_path is not None:
            pose_image = load_image(pose_image_path)
            pose_image = resize_img(pose_image)
            pose_image_cv2 = convert_from_image_to_cv2(pose_image)
            
            face_info = app.get(pose_image_cv2)
            
            if len(face_info) == 0:
                raise gr.Error(f"Cannot find any face in the reference image! Please upload another person image")
            
            face_info = face_info[-1]
            face_kps = draw_kps(pose_image, face_info['kps'])
            
            width, height = face_kps.size

        if enhance_face_region:
            control_mask = np.zeros([height, width, 3])
            x1, y1, x2, y2 = face_info["bbox"]
            x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
            control_mask[y1:y2, x1:x2] = 255
            control_mask = Image.fromarray(control_mask.astype(np.uint8))
        else:
            control_mask = None
                        
        generator = torch.Generator(device=device).manual_seed(seed)
        
        pipe.set_ip_adapter_scale(adapter_strength_ratio)
        images = pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            image_embeds=face_emb,
            image=face_kps,
            control_mask=control_mask,
            controlnet_conditioning_scale=float(identitynet_strength_ratio),
            num_inference_steps=num_steps,
            guidance_scale=guidance_scale,
            height=height,
            width=width,
            generator=generator,
            # num_images_per_prompt = 4
        ).images
        
        watermarked_image = add_watermark(images[0])

        # return images[0]
        return watermarked_image

    ### Description
    title = r"""
    <h1 align="center" style="color:white;">Choose your AVATAR</h1>
    """

    description = r"""
    <h2 style="color:white;"> Powered by IDfy </h2>"""

    article = r""""""

    tips = r""""""
    css = '''
    .gradio-container {width: 100% !important; color: white; background: linear-gradient(135deg, #1C43B9, #254977, #343434);} 
    .gradio-row .gradio-element { margin: 0 !important; }
    .centered-column {
    display: flex;
    justify-content: center;
    align-items: center;
    width: 100%;}
    #submit-btn, #store-btn {
    background: linear-gradient(to right, #ffffff, #f2bb13); !important;
    color: #254977 !important;
    }
    '''
    with gr.Blocks(css=css) as demo:

    # description
        gr.Markdown(title)
        with gr.Column():
            with gr.Row():
                gr.Image("./gradio_demo/logo.png", scale=0, min_width=50, show_label=False, show_download_button=False, show_share_button=False)
                gr.Markdown(description)
            style = gr.Dropdown(label="Choose your STYLE", choices=STYLE_NAMES)
            with gr.Row(equal_height=True):  # Center the face file
                with gr.Column(elem_id="centered-face", elem_classes=["centered-column"]):  # Use CSS class for centering
                    face_file = gr.Image(label="Upload a photo of your face", type="pil", height=400, width=500)
            submit = gr.Button("Submit", variant="primary",elem_id="submit-btn")
            with gr.Column():
                with gr.Row():
                    gallery1 = gr.Image(label="Generated Images", interactive=False, height=640, width=640)
                    gallery2 = gr.Image(label="Generated Images", interactive=False, height=640, width=640)
                with gr.Row():
                    gallery3 = gr.Image(label="Generated Images", interactive=False, height=640, width=640)
                    gallery4 = gr.Image(label="Generated Images", interactive=False, height=640, width=640)
            email = gr.Textbox(label="Email", info="Enter your email address", value="")
            consent = gr.Checkbox(label="I am giving my consent to use my data to share my AI Avtar and IDfy relevant information from time to time", value=True)
            submit1 = gr.Button("SUBMIT", variant = "primary", elem_id="store-btn")
            usage_tips = gr.Markdown(label="Usage tips of InstantID", value=tips ,visible=False)
                
            face_file.upload(
                fn=remove_tips,
                outputs=usage_tips,
                queue=True,
                api_name=False,
                show_progress = "full"
            ).then(
                fn=run_for_prompts1,
                inputs=[face_file,style],
                outputs=[gallery1]
            ).then(
                fn=run_for_prompts2,
                inputs=[face_file,style],
                outputs=[gallery2]
            ).then(
                fn=run_for_prompts3,
                inputs=[face_file,style],
                outputs=[gallery3]
            ).then(
                fn=run_for_prompts4,
                inputs=[face_file,style],
                outputs=[gallery4]
            )
            submit.click(
                fn=remove_tips,
                outputs=usage_tips,
                queue=True,
                api_name=False,
                show_progress = "full"
            ).then(
                fn=run_for_prompts1,
                inputs=[face_file,style],
                outputs=[gallery1]
            ).then(
                fn=run_for_prompts2,
                inputs=[face_file,style],
                outputs=[gallery2]
            ).then(
                fn=run_for_prompts3,
                inputs=[face_file,style],
                outputs=[gallery3]
            ).then(
                fn=run_for_prompts4,
                inputs=[face_file,style],
                outputs=[gallery4]
            )
            
            submit1.click(
                fn=store_images,
                inputs=[email,gallery1,gallery2,gallery3,gallery4,consent,style],
                outputs=[face_file,gallery1,gallery2,gallery3,gallery4])
            
        
        
        gr.Markdown(article)

    demo.launch(share=True)
if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--pretrained_model_name_or_path", type=str, default="wangqixun/YamerMIX_v8")
    args = parser.parse_args()

    main(args.pretrained_model_name_or_path, False)