File size: 25,441 Bytes
b2cbfed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71e256a
b2cbfed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71e256a
5406396
 
b2cbfed
 
 
 
 
 
 
 
 
 
 
 
 
950d754
71e256a
b2cbfed
 
 
 
 
 
 
 
 
5406396
b2cbfed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71e256a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2cbfed
71e256a
 
 
 
b2cbfed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
import sys
sys.path.append('./')

from typing import Tuple

import os
import cv2
import math
import torch
import random
import numpy as np
import argparse
import pandas as pd

import PIL
from PIL import Image

import diffusers
from diffusers.utils import load_image
from diffusers.models import ControlNetModel
from diffusers import LCMScheduler

from huggingface_hub import hf_hub_download

import insightface
from insightface.app import FaceAnalysis

from style_template import styles
from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline
from model_util import load_models_xl, get_torch_device, torch_gc


# global variable
MAX_SEED = np.iinfo(np.int32).max
device = get_torch_device()
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Watercolor"

# Load face encoder
app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))

# Path to InstantID models
face_adapter = f'./checkpoints/ip-adapter.bin'
controlnet_path = f'./checkpoints/ControlNetModel'

# Load pipeline
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=dtype)

logo = Image.open("./gradio_demo/watermark.png")
logo = logo.resize((100, 100))

from cv2 import imencode
import base64

# def encode_pil_to_base64_new(pil_image):
#     print("AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA")
#     image_arr = np.asarray(pil_image)[:,:,::-1]
#     _, byte_data = imencode('.png', image_arr)        
#     base64_data = base64.b64encode(byte_data)
#     base64_string_opencv = base64_data.decode("utf-8")
#     return "data:image/png;base64," + base64_string_opencv

import gradio as gr

# gr.processing_utils.encode_pil_to_base64 = encode_pil_to_base64_new

def main(pretrained_model_name_or_path="wangqixun/YamerMIX_v8", enable_lcm_arg=False):

    if pretrained_model_name_or_path.endswith(
            ".ckpt"
        ) or pretrained_model_name_or_path.endswith(".safetensors"):
            scheduler_kwargs = hf_hub_download(
                repo_id="wangqixun/YamerMIX_v8",
                subfolder="scheduler",
                filename="scheduler_config.json",
            )

            (tokenizers, text_encoders, unet, _, vae) = load_models_xl(
                pretrained_model_name_or_path=pretrained_model_name_or_path,
                scheduler_name=None,
                weight_dtype=dtype,
            )

            scheduler = diffusers.EulerDiscreteScheduler.from_config(scheduler_kwargs)
            pipe = StableDiffusionXLInstantIDPipeline(
                vae=vae,
                text_encoder=text_encoders[0],
                text_encoder_2=text_encoders[1],
                tokenizer=tokenizers[0],
                tokenizer_2=tokenizers[1],
                unet=unet,
                scheduler=scheduler,
                controlnet=controlnet,
            ).to(device)

    else:
        pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
            pretrained_model_name_or_path,
            controlnet=controlnet,
            torch_dtype=dtype,
            safety_checker=None,
            feature_extractor=None,
        ).to(device)

        pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(pipe.scheduler.config)

    pipe.load_ip_adapter_instantid(face_adapter)
    # load and disable LCM
    pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
    pipe.disable_lora()
    
    def remove_tips():
        print("GG")
        return gr.update(visible=False)

    
    # prompts = [
    #     ["superman","Vibrant Color"], ["japanese anime character with white/neon hair","Watercolor"], 
    #     # ["Suited professional","(No style)"], 
    #     ["Scooba diver","Line art"], ["eskimo","Snow"]
    # ]

    def convert_from_cv2_to_image(img: np.ndarray) -> Image:
        return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))

    def convert_from_image_to_cv2(img: Image) -> np.ndarray:
        return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)

    def run_for_prompts1(face_file,style,progress=gr.Progress(track_tqdm=True)):
        # if email != "":
        p,n = styles.get(style, styles.get(STYLE_NAMES[1]))
        return generate_image(face_file, p[0], n)
        # else:
            # raise gr.Error("Email ID is compulsory")
    def run_for_prompts2(face_file,style,progress=gr.Progress(track_tqdm=True)):
        # if email != "":
        p,n = styles.get(style, styles.get(STYLE_NAMES[1]))
        return generate_image(face_file, p[1], n)
    def run_for_prompts3(face_file,style,progress=gr.Progress(track_tqdm=True)):
        # if email != "":
        p,n = styles.get(style, styles.get(STYLE_NAMES[1]))
        return generate_image(face_file, p[2], n)
    def run_for_prompts4(face_file,style,progress=gr.Progress(track_tqdm=True)):
        # if email != "":
        p,n = styles.get(style, styles.get(STYLE_NAMES[1]))
        return generate_image(face_file, p[3], n)
    
#     def validate_and_process(face_file, style, email):
    
#     # Your processing logic here
#     gallery1, gallery2, gallery3, gallery4 = run_for_prompts1(face_file, style), run_for_prompts2(face_file, style), run_for_prompts3(face_file, style), run_for_prompts4(face_file, style)
#     return gallery1, gallery2, gallery3, gallery4

    def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]):
        stickwidth = 4
        limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
        kps = np.array(kps)

        w, h = image_pil.size
        out_img = np.zeros([h, w, 3])

        for i in range(len(limbSeq)):
            index = limbSeq[i]
            color = color_list[index[0]]

            x = kps[index][:, 0]
            y = kps[index][:, 1]
            length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
            angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
            polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
            out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
        out_img = (out_img * 0.6).astype(np.uint8)

        for idx_kp, kp in enumerate(kps):
            color = color_list[idx_kp]
            x, y = kp
            out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)

        out_img_pil = Image.fromarray(out_img.astype(np.uint8))
        return out_img_pil

    def resize_img(input_image, max_side=1280, min_side=1280, size=None, 
                pad_to_max_side=True, mode=PIL.Image.BILINEAR, base_pixel_number=64):

            w, h = input_image.size
            print(f"Original Size --> {input_image.size}")
            if size is not None:
                w_resize_new, h_resize_new = size
            else:
                ratio = min_side / min(h, w)
                w, h = round(ratio*w), round(ratio*h)
                ratio = max_side / max(h, w)
                input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
                w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
                h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
            input_image = input_image.resize([w_resize_new, h_resize_new], mode)

            if pad_to_max_side:
                res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
                offset_x = (max_side - w_resize_new) // 2
                offset_y = (max_side - h_resize_new) // 2
                res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
                input_image = Image.fromarray(res)
            
            print(f"Final modified image size --> {input_image.size}")
            return input_image

    # def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
    #     p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    #     return p.replace("{prompt}", positive), n + ' ' + negative
    
    def store_images(email, gallery1, gallery2, gallery3, gallery4,consent):
        if not consent:
            raise gr.Error("Consent not provided")
        galleries = []
        for i, img in enumerate([gallery1, gallery2, gallery3, gallery4], start=1):
            if isinstance(img, np.ndarray):
                img = Image.fromarray(img)
            print(f"Gallery {i} type after conversion: {type(img)}")
            galleries.append(img)
        # Create the images directory if it doesn't exist
        if not os.path.exists('images'):
            os.makedirs('images')

        # Define image file paths
        image_paths = []
        for i, img in enumerate(galleries, start=1):
            img_path = f'images/{email}_gallery{i}.png'
            img.save(img_path)
            image_paths.append(img_path)

        # Define the CSV file path
        csv_file_path = 'image_data.csv'

        # Create a DataFrame for the email and image paths
        df = pd.DataFrame({
            'email': [email],
            'img1_path': [image_paths[0]],
            'img2_path': [image_paths[1]],
            'img3_path': [image_paths[2]],
            'img4_path': [image_paths[3]],
        })

        # Write to CSV (append if the file exists, create a new one if it doesn't)
        if not os.path.isfile(csv_file_path):
            df.to_csv(csv_file_path, index=False)
        else:
            df.to_csv(csv_file_path, mode='a', header=False, index=False)
        
        gr.Info("Thankyou!! Your avatar is on the way to your inbox")
    
    def add_watermark(image, watermark=logo, opacity=128, position="bottom_right", padding=10):
        # Convert NumPy array to PIL Image if needed
        if isinstance(image, np.ndarray):
            image = Image.fromarray(image)

        if isinstance(watermark, np.ndarray):
            watermark = Image.fromarray(watermark)

        # Convert images to 'RGBA' mode to handle transparency
        image = image.convert("RGBA")
        watermark = watermark.convert("RGBA")

        # Adjust the watermark opacity
        watermark = watermark.copy()
        watermark.putalpha(opacity)

        # Calculate the position for the watermark
        if position == "bottom_right":
            x = image.width - watermark.width - padding
            y = image.height - watermark.height - padding
        elif position == "bottom_left":
            x = padding
            y = image.height - watermark.height - padding
        elif position == "top_right":
            x = image.width - watermark.width - padding
            y = padding
        elif position == "top_left":
            x = padding
            y = padding
        else:
            raise ValueError("Unsupported position. Choose from 'bottom_right', 'bottom_left', 'top_right', 'top_left'.")

        # Paste the watermark onto the image
        image.paste(watermark, (x, y), watermark)

        # Convert back to 'RGB' if the original image was not 'RGBA'
        if image.mode != "RGBA":
            image = image.convert("RGB")

        # return resize_img(image)
        return image

    def generate_image(face_image,prompt,negative_prompt):
        pose_image_path = None
        # prompt = "superman"
        enable_LCM = False
        identitynet_strength_ratio = 0.90
        adapter_strength_ratio = 0.60
        num_steps = 15
        guidance_scale = 5
        seed = random.randint(0, MAX_SEED)
        print(f"Seed --> {seed}")
        
        # negative_prompt = ""
        # negative_prompt += neg
        enhance_face_region = True
        if enable_LCM:
            pipe.enable_lora()
            pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
        else:
            pipe.disable_lora()
            pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(pipe.scheduler.config)
    
        if face_image is None:
            raise gr.Error(f"Cannot find any input face image! Please upload the face image")
        
        # if prompt is None:
        #     prompt = "a person"
        
        # apply the style template
        # prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
        
        # face_image = load_image(face_image_path)
        face_image = resize_img(face_image)
        face_image_cv2 = convert_from_image_to_cv2(face_image)
        height, width, _ = face_image_cv2.shape
        
        # Extract face features
        face_info = app.get(face_image_cv2)
        
        if len(face_info) == 0:
            raise gr.Error(f"Cannot find any face in the image! Please upload another person image")
        
        face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1]  # only use the maximum face
        face_emb = face_info['embedding']
        face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info['kps'])
        
        if pose_image_path is not None:
            pose_image = load_image(pose_image_path)
            pose_image = resize_img(pose_image)
            pose_image_cv2 = convert_from_image_to_cv2(pose_image)
            
            face_info = app.get(pose_image_cv2)
            
            if len(face_info) == 0:
                raise gr.Error(f"Cannot find any face in the reference image! Please upload another person image")
            
            face_info = face_info[-1]
            face_kps = draw_kps(pose_image, face_info['kps'])
            
            width, height = face_kps.size

        if enhance_face_region:
            control_mask = np.zeros([height, width, 3])
            x1, y1, x2, y2 = face_info["bbox"]
            x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
            control_mask[y1:y2, x1:x2] = 255
            control_mask = Image.fromarray(control_mask.astype(np.uint8))
        else:
            control_mask = None
                        
        generator = torch.Generator(device=device).manual_seed(seed)
        
        print("Start inference...")
        print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}")
        
        pipe.set_ip_adapter_scale(adapter_strength_ratio)
        images = pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            image_embeds=face_emb,
            image=face_kps,
            control_mask=control_mask,
            controlnet_conditioning_scale=float(identitynet_strength_ratio),
            num_inference_steps=num_steps,
            guidance_scale=guidance_scale,
            height=height,
            width=width,
            generator=generator,
            # num_images_per_prompt = 4
        ).images
        
        watermarked_image = add_watermark(images[0])

        # return images[0]
        return watermarked_image

    ### Description
    title = r"""
    <h1 align="center" style="color:white;">Choose your AVATAR</h1>
    """

    description = r"""
    <h2 style="color:white;"> Powered by IDfy </h2>"""

    article = r""""""

    tips = r""""""
    # css = '''
    # .gradio-container {
    #     width: 95% !important; 
    #     background-image: url('./InstantID/gradio_demo/logo.png'); 
    #     background-size: cover;
    #     background-position: center;
    # } 
    # .image-gallery {
    #     height: 100vh !important; 
    #     overflow: auto;
    # }
    # .gradio-row .gradio-element { 
    #     margin: 0 !important; 
    # }
    # '''
    css = '''
    .gradio-container {width: 100% !important; color: white; background: linear-gradient(135deg, #1C43B9, #254977, #343434);} 
    .gradio-row .gradio-element { margin: 0 !important; }
    .centered-column {
    display: flex;
    justify-content: center;
    align-items: center;
    width: 100%;}
    sub-btn,#store-btn {
    background: linear-gradient(to right, #ffffff, #f2bb13); !important;
    color: #254977 !important;
    }
    '''
    with gr.Blocks(css=css) as demo:

    # description
        gr.Markdown(title)
        with gr.Column():
            with gr.Row():
                gr.Image("./gradio_demo/logo.png", scale=0, min_width=50, show_label=False, show_download_button=False)
                gr.Markdown(description)
            style = gr.Dropdown(label="Choose your STYLE", choices=STYLE_NAMES)
            with gr.Row(equal_height=True):  # Center the face file
                with gr.Column(elem_id="centered-face", elem_classes=["centered-column"]):  # Use CSS class for centering
                    face_file = gr.Image(label="Upload a photo of your face", type="pil", height=400, width=500)
            submit = gr.Button("Submit", variant="primary",elem_id="sub-btn")
            with gr.Column():
                with gr.Row():
                    gallery1 = gr.Image(label="Generated Images")
                    gallery2 = gr.Image(label="Generated Images")
                with gr.Row():
                    gallery3 = gr.Image(label="Generated Images")
                    gallery4 = gr.Image(label="Generated Images")
            email = gr.Textbox(label="Email", info="Enter your email address", value="")
            consent = gr.Checkbox(label="I am giving my consent to use my data to share my AI Avtar and IDfy relevant information from time to time")
            submit1 = gr.Button("SUBMIT",elem_id="store-btn")
#     with gr.Blocks(css=css) as demo:

#         # description
#         gr.Markdown(title)
#         with gr.Column():
#             with gr.Row():
#                 gr.Image("./gradio_demo/logo.png",scale=0,min_width=50,show_label=False,show_download_button=False)
#                 gr.Markdown(description)
#             style = gr.Dropdown(label="Choose your STYLE", choices=STYLE_NAMES)
#             face_file = gr.Image(label="Upload a photo of your face", type="pil",sources="webcam", height=400, width=500)
#             submit = gr.Button("Submit", variant="primary")
#             with gr.Column():
#                 with gr.Row():
#                     gallery1 = gr.Image(label="Generated Images")
#                     gallery2 = gr.Image(label="Generated Images")
#                 with gr.Row():
#                     gallery3 = gr.Image(label="Generated Images")
#                     gallery4 = gr.Image(label="Generated Images")
#             email = gr.Textbox(label="Email",
#                     info="Enter your email address",
#                     value="")
#             consent = gr.Checkbox(label="I am giving my consent to use my data to share my AI Avtar and IDfy relevant information from time to time")
#             submit1 = gr.Button("STORE", variant="primary")
#                 # submit1 = gr.Button("Store")
            usage_tips = gr.Markdown(label="Usage tips of InstantID", value=tips ,visible=False)
                
            face_file.upload(
                fn=remove_tips,
                outputs=usage_tips,
                queue=True,
                api_name=False,
                show_progress = "full"
            ).then(
                fn=run_for_prompts1,
                inputs=[face_file,style],
                outputs=[gallery1]
            ).then(
                fn=run_for_prompts2,
                inputs=[face_file,style],
                outputs=[gallery2]
            ).then(
                fn=run_for_prompts3,
                inputs=[face_file,style],
                outputs=[gallery3]
            ).then(
                fn=run_for_prompts4,
                inputs=[face_file,style],
                outputs=[gallery4]
            )
            submit.click(
                fn=remove_tips,
                outputs=usage_tips,
                queue=True,
                api_name=False,
                show_progress = "full"
            ).then(
                fn=run_for_prompts1,
                inputs=[face_file,style],
                outputs=[gallery1]
            ).then(
                fn=run_for_prompts2,
                inputs=[face_file,style],
                outputs=[gallery2]
            ).then(
                fn=run_for_prompts3,
                inputs=[face_file,style],
                outputs=[gallery3]
            ).then(
                fn=run_for_prompts4,
                inputs=[face_file,style],
                outputs=[gallery4]
            )
            
            submit1.click(
                fn=store_images,
                inputs=[email,gallery1,gallery2,gallery3,gallery4,consent],
                outputs=None)
            
        
        
        gr.Markdown(article)

    demo.launch(share=True)

#     with gr.Blocks(css=css, js=js) as demo:

#         # description
#         gr.Markdown(title)
#         with gr.Row():
#             gr.Image("./gradio_demo/logo.png",scale=0,min_width=50,show_label=False,show_download_button=False)
#             gr.Markdown(description)
#         with gr.Row():
#             with gr.Column():
#                 style = gr.Dropdown(label="Choose your STYLE", choices=STYLE_NAMES)
#                 face_file = gr.Image(label="Upload a photo of your face", type="pil",sources="webcam")
#                 submit = gr.Button("Submit", variant="primary")
#             with gr.Column():
#                 with gr.Row():
#                     gallery1 = gr.Image(label="Generated Images")
#                     gallery2 = gr.Image(label="Generated Images")
#                 with gr.Row():
#                     gallery3 = gr.Image(label="Generated Images")
#                     gallery4 = gr.Image(label="Generated Images")
#                 email = gr.Textbox(label="Email",
#                         info="Enter your email address",
#                         value="")
            
#             usage_tips = gr.Markdown(label="Usage tips of InstantID", value=tips ,visible=False)
#             # identitynet_strength_ratio = gr.Slider(
#             #     label="IdentityNet strength (for fidelity)",
#             #     minimum=0,
#             #     maximum=1.5,
#             #     step=0.05,
#             #     value=0.95,
#             # )
#             # adapter_strength_ratio = gr.Slider(
#             #     label="Image adapter strength (for detail)",
#             #     minimum=0,
#             #     maximum=1.5,
#             #     step=0.05,
#             #     value=0.60,
#             # )
#             # negative_prompt = gr.Textbox(
#             #     label="Negative Prompt", 
#             #     placeholder="low quality",
#             #     value="(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
#             # )
#             # num_steps = gr.Slider( 
#             #     label="Number of sample steps",
#             #     minimum=15,
#             #     maximum=100,
#             #     step=1,
#             #     value=5 if enable_lcm_arg else 15,
#             # )
#             # guidance_scale = gr.Slider(
#             #     label="Guidance scale",
#             #     minimum=0.1,
#             #     maximum=10.0,
#             #     step=0.1,
#             #     value=0 if enable_lcm_arg else 8.5,
#             # )
#             # if email is None:
#             #     print("STOPPPP")
#             #     raise gr.Error("Email ID is compulsory")
#             face_file.upload(
#                 fn=remove_tips,
#                 outputs=usage_tips,
#                 queue=True,
#                 api_name=False,
#                 show_progress = "full"
#             ).then(
#                 fn=run_for_prompts1,
#                 inputs=[face_file,style],
#                 outputs=[gallery1]
#             ).then(
#                 fn=run_for_prompts2,
#                 inputs=[face_file,style],
#                 outputs=[gallery2]
#             ).then(
#                 fn=run_for_prompts3,
#                 inputs=[face_file,style],
#                 outputs=[gallery3]
#             ).then(
#                 fn=run_for_prompts4,
#                 inputs=[face_file,style],
#                 outputs=[gallery4]
#             )
#             submit.click(
#                 fn=remove_tips,
#                 outputs=usage_tips,
#                 queue=True,
#                 api_name=False,
#                 show_progress = "full"
#             ).then(
#                 fn=run_for_prompts1,
#                 inputs=[face_file,style],
#                 outputs=[gallery1]
#             ).then(
#                 fn=run_for_prompts2,
#                 inputs=[face_file,style],
#                 outputs=[gallery2]
#             ).then(
#                 fn=run_for_prompts3,
#                 inputs=[face_file,style],
#                 outputs=[gallery3]
#             ).then(
#                 fn=run_for_prompts4,
#                 inputs=[face_file,style],
#                 outputs=[gallery4]
#             )
        
        
#         gr.Markdown(article)

#     demo.launch(share=True)

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--pretrained_model_name_or_path", type=str, default="wangqixun/YamerMIX_v8")
    args = parser.parse_args()

    main(args.pretrained_model_name_or_path, False)