File size: 11,799 Bytes
9bf9e42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# This file contains ShowAttendTell and AllImg model

# ShowAttendTell is from Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
# https://arxiv.org/abs/1502.03044

# AllImg is a model where
# img feature is concatenated with word embedding at every time step as the input of lstm
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import *
# import misc.utils as utils
# import utils as utils
from . import utils

from .CaptionModel import CaptionModel


class OldModel(CaptionModel):
    def __init__(self, opt):
        super(OldModel, self).__init__()
        self.vocab_size = opt.vocab_size
        self.input_encoding_size = opt.input_encoding_size
        self.rnn_type = opt.rnn_type
        self.rnn_size = opt.rnn_size
        self.num_layers = opt.num_layers
        self.drop_prob_lm = opt.drop_prob_lm
        self.seq_length = opt.seq_length
        self.fc_feat_size = opt.fc_feat_size
        self.att_feat_size = opt.att_feat_size

        self.ss_prob = 0.0  # Schedule sampling probability

        self.linear = nn.Linear(self.fc_feat_size, self.num_layers * self.rnn_size)  # feature to rnn_size
        self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size)
        self.logit = nn.Linear(self.rnn_size, self.vocab_size + 1)
        self.dropout = nn.Dropout(self.drop_prob_lm)

        self.init_weights()

    def init_weights(self):
        initrange = 0.1
        self.embed.weight.data.uniform_(-initrange, initrange)
        self.logit.bias.data.fill_(0)
        self.logit.weight.data.uniform_(-initrange, initrange)

    def init_hidden(self, fc_feats):
        image_map = self.linear(fc_feats).view(-1, self.num_layers, self.rnn_size).transpose(0, 1)
        if self.rnn_type == 'lstm':
            return (image_map, image_map)
        else:
            return image_map

    def forward(self, fc_feats, att_feats, seq):
        batch_size = fc_feats.size(0)
        state = self.init_hidden(fc_feats)

        outputs = []

        for i in range(seq.size(1) - 1):
            if self.training and i >= 1 and self.ss_prob > 0.0:  # otherwiste no need to sample
                sample_prob = fc_feats.data.new(batch_size).uniform_(0, 1)
                sample_mask = sample_prob < self.ss_prob
                if sample_mask.sum() == 0:
                    it = seq[:, i].clone()
                else:
                    sample_ind = sample_mask.nonzero().view(-1)
                    it = seq[:, i].data.clone()
                    # prob_prev = torch.exp(outputs[-1].data.index_select(0, sample_ind)) # fetch prev distribution: shape Nx(M+1)
                    # it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1))
                    prob_prev = torch.exp(outputs[-1].data)  # fetch prev distribution: shape Nx(M+1)
                    it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1).index_select(0, sample_ind))
                    it = Variable(it, requires_grad=False)
            else:
                it = seq[:, i].clone()
                # break if all the sequences end
            if i >= 1 and seq[:, i].data.sum() == 0:
                break

            xt = self.embed(it)

            output, state = self.core(xt, fc_feats, att_feats, state)
            output = F.log_softmax(self.logit(self.dropout(output)))
            outputs.append(output)

        return torch.cat([_.unsqueeze(1) for _ in outputs], 1)

    def get_logprobs_state(self, it, tmp_fc_feats, tmp_att_feats, state):
        # 'it' is Variable contraining a word index
        xt = self.embed(it)

        output, state = self.core(xt, tmp_fc_feats, tmp_att_feats, state)
        logprobs = F.log_softmax(self.logit(self.dropout(output)))

        return logprobs, state

    def sample_beam(self, fc_feats, att_feats, opt={}):
        beam_size = opt.get('beam_size', 10)
        batch_size = fc_feats.size(0)

        assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed'
        seq = torch.LongTensor(self.seq_length, batch_size).zero_()
        seqLogprobs = torch.FloatTensor(self.seq_length, batch_size)
        # lets process every image independently for now, for simplicity

        self.done_beams = [[] for _ in range(batch_size)]
        for k in range(batch_size):
            tmp_fc_feats = fc_feats[k:k + 1].expand(beam_size, self.fc_feat_size)
            tmp_att_feats = att_feats[k:k + 1].expand(*((beam_size,) + att_feats.size()[1:])).contiguous()

            state = self.init_hidden(tmp_fc_feats)

            beam_seq = torch.LongTensor(self.seq_length, beam_size).zero_()
            beam_seq_logprobs = torch.FloatTensor(self.seq_length, beam_size).zero_()
            beam_logprobs_sum = torch.zeros(beam_size)  # running sum of logprobs for each beam
            done_beams = []
            for t in range(1):
                if t == 0:  # input <bos>
                    it = fc_feats.data.new(beam_size).long().zero_()
                    xt = self.embed(Variable(it, requires_grad=False))

                output, state = self.core(xt, tmp_fc_feats, tmp_att_feats, state)
                logprobs = F.log_softmax(self.logit(self.dropout(output)))

            self.done_beams[k] = self.beam_search(state, logprobs, tmp_fc_feats, tmp_att_feats, opt=opt)
            seq[:, k] = self.done_beams[k][0]['seq']  # the first beam has highest cumulative score
            seqLogprobs[:, k] = self.done_beams[k][0]['logps']
        # return the samples and their log likelihoods
        return seq.transpose(0, 1), seqLogprobs.transpose(0, 1)

    def sample(self, fc_feats, att_feats, opt={}):
        sample_max = opt.get('sample_max', 1)
        beam_size = opt.get('beam_size', 1)
        temperature = opt.get('temperature', 1.0)
        if beam_size > 1:
            return self.sample_beam(fc_feats, att_feats, opt)

        batch_size = fc_feats.size(0)
        state = self.init_hidden(fc_feats)

        seq = []
        seqLogprobs = []
        for t in range(self.seq_length + 1):
            if t == 0:  # input <bos>
                it = fc_feats.data.new(batch_size).long().zero_()
            elif sample_max:
                sampleLogprobs, it = torch.max(logprobs.data, 1)
                it = it.view(-1).long()
            else:
                if temperature == 1.0:
                    prob_prev = torch.exp(logprobs.data).cpu()  # fetch prev distribution: shape Nx(M+1)
                else:
                    # scale logprobs by temperature
                    prob_prev = torch.exp(torch.div(logprobs.data, temperature)).cpu()
                it = torch.multinomial(prob_prev, 1).cuda()
                sampleLogprobs = logprobs.gather(1, Variable(it,
                                                             requires_grad=False))  # gather the logprobs at sampled positions
                it = it.view(-1).long()  # and flatten indices for downstream processing

            xt = self.embed(Variable(it, requires_grad=False))

            if t >= 1:
                # stop when all finished
                if t == 1:
                    unfinished = it > 0
                else:
                    unfinished = unfinished * (it > 0)
                if unfinished.sum() == 0:
                    break
                it = it * unfinished.type_as(it)
                seq.append(it)  # seq[t] the input of t+2 time step
                seqLogprobs.append(sampleLogprobs.view(-1))

            output, state = self.core(xt, fc_feats, att_feats, state)
            logprobs = F.log_softmax(self.logit(self.dropout(output)), -1)

        return torch.cat([_.unsqueeze(1) for _ in seq], 1), torch.cat([_.unsqueeze(1) for _ in seqLogprobs], 1)


class ShowAttendTellCore(nn.Module):
    def __init__(self, opt):
        super(ShowAttendTellCore, self).__init__()
        self.input_encoding_size = opt.input_encoding_size
        self.rnn_type = opt.rnn_type
        self.rnn_size = opt.rnn_size
        self.num_layers = opt.num_layers
        self.drop_prob_lm = opt.drop_prob_lm
        self.fc_feat_size = opt.fc_feat_size
        self.att_feat_size = opt.att_feat_size
        self.att_hid_size = opt.att_hid_size

        self.rnn = getattr(nn, self.rnn_type.upper())(self.input_encoding_size + self.att_feat_size,
                                                      self.rnn_size, self.num_layers, bias=False,
                                                      dropout=self.drop_prob_lm)

        if self.att_hid_size > 0:
            self.ctx2att = nn.Linear(self.att_feat_size, self.att_hid_size)
            self.h2att = nn.Linear(self.rnn_size, self.att_hid_size)
            self.alpha_net = nn.Linear(self.att_hid_size, 1)
        else:
            self.ctx2att = nn.Linear(self.att_feat_size, 1)
            self.h2att = nn.Linear(self.rnn_size, 1)

    def forward(self, xt, fc_feats, att_feats, state):
        att_size = att_feats.numel() // att_feats.size(0) // self.att_feat_size
        att = att_feats.view(-1, self.att_feat_size)
        if self.att_hid_size > 0:
            att = self.ctx2att(att)  # (batch * att_size) * att_hid_size
            att = att.view(-1, att_size, self.att_hid_size)  # batch * att_size * att_hid_size
            att_h = self.h2att(state[0][-1])  # batch * att_hid_size
            att_h = att_h.unsqueeze(1).expand_as(att)  # batch * att_size * att_hid_size
            dot = att + att_h  # batch * att_size * att_hid_size
            dot = torch.tanh(dot)  # batch * att_size * att_hid_size
            dot = dot.view(-1, self.att_hid_size)  # (batch * att_size) * att_hid_size
            dot = self.alpha_net(dot)  # (batch * att_size) * 1
            dot = dot.view(-1, att_size)  # batch * att_size
        else:
            att = self.ctx2att(att)(att)  # (batch * att_size) * 1
            att = att.view(-1, att_size)  # batch * att_size
            att_h = self.h2att(state[0][-1])  # batch * 1
            att_h = att_h.expand_as(att)  # batch * att_size
            dot = att_h + att  # batch * att_size

        weight = F.softmax(dot, -1)
        att_feats_ = att_feats.view(-1, att_size, self.att_feat_size)  # batch * att_size * att_feat_size
        att_res = torch.bmm(weight.unsqueeze(1), att_feats_).squeeze(1)  # batch * att_feat_size

        output, state = self.rnn(torch.cat([xt, att_res], 1).unsqueeze(0), state)
        return output.squeeze(0), state


class AllImgCore(nn.Module):
    def __init__(self, opt):
        super(AllImgCore, self).__init__()
        self.input_encoding_size = opt.input_encoding_size
        self.rnn_type = opt.rnn_type
        self.rnn_size = opt.rnn_size
        self.num_layers = opt.num_layers
        self.drop_prob_lm = opt.drop_prob_lm
        self.fc_feat_size = opt.fc_feat_size

        self.rnn = getattr(nn, self.rnn_type.upper())(self.input_encoding_size + self.fc_feat_size,
                                                      self.rnn_size, self.num_layers, bias=False,
                                                      dropout=self.drop_prob_lm)

    def forward(self, xt, fc_feats, att_feats, state):
        output, state = self.rnn(torch.cat([xt, fc_feats], 1).unsqueeze(0), state)
        return output.squeeze(0), state


class ShowAttendTellModel(OldModel):
    def __init__(self, opt):
        super(ShowAttendTellModel, self).__init__(opt)
        self.core = ShowAttendTellCore(opt)


class AllImgModel(OldModel):
    def __init__(self, opt):
        super(AllImgModel, self).__init__(opt)
        self.core = AllImgCore(opt)