Spaces:
Sleeping
Sleeping
File size: 5,025 Bytes
35082a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
import torch
import gradio as gr
from diffusers import StableDiffusionPipeline
from diffusers import DDIMScheduler,EulerDiscreteScheduler,EulerAncestralDiscreteScheduler,UniPCMultistepScheduler
from diffusers import KDPM2DiscreteScheduler,KDPM2AncestralDiscreteScheduler,PNDMScheduler,StableDiffusionPipeline
from diffusers import DPMSolverMultistepScheduler
import random
def set_pipeline(model_id_repo,scheduler):
model_ids_dict = {
"pokemon": "yashAI007/pokemon"
}
model_id = model_id_repo
model_repo = model_ids_dict.get(model_id)
print("model_repo :",model_repo)
pipe = StableDiffusionPipeline.from_pretrained(
model_repo,
# torch_dtype=torch.float16, # to run on cpu
use_safetensors=True,
).to("cpu")
# pipe = StableDiffusionPipeline.from_pretrained(
# model_repo,
# torch_dtype=torch.float16, # to run on Gpu
# use_safetensors=True,
# ).to("cuda")
scheduler_classes = {
"DDIM": DDIMScheduler,
"Euler": EulerDiscreteScheduler,
"Euler a": EulerAncestralDiscreteScheduler,
"UniPC": UniPCMultistepScheduler,
"DPM2 Karras": KDPM2DiscreteScheduler,
"DPM2 a Karras": KDPM2AncestralDiscreteScheduler,
"PNDM": PNDMScheduler,
"DPM++ 2M Karras": DPMSolverMultistepScheduler,
"DPM++ 2M SDE Karras": DPMSolverMultistepScheduler,
}
sampler_name = scheduler # Example sampler name, replace with the actual value
scheduler_class = scheduler_classes.get(sampler_name)
if scheduler_class is not None:
print("sampler_name:",sampler_name)
pipe.scheduler = scheduler_class.from_config(pipe.scheduler.config)
else:
pass
return pipe
def img_args(
prompt,
negative_prompt,
model_id_repo = "pokemon",
scheduler= "Euler a",
height=896,
width=896,
num_inference_steps = 30,
guidance_scale = 7.5,
num_images_per_prompt = 1,
seed = 0
):
print(model_id_repo)
print(scheduler)
print(prompt,"&&&&&&&&&&&&&&&&")
pipe = set_pipeline(model_id_repo,scheduler)
if seed == 0:
seed = random.randint(0,25647981548564)
print(f"random seed :{seed}")
generator = torch.manual_seed(seed)
else:
generator = torch.manual_seed(seed)
print(f"manual seed :{seed}")
image = pipe(prompt=prompt,
negative_prompt = negative_prompt,
height = height,
width = width,
num_inference_steps = num_inference_steps,
guidance_scale = guidance_scale,
num_images_per_prompt = num_images_per_prompt, # default 1
generator = generator,
).images
return image
block = gr.Blocks().queue()
block.title = "Inpaint Anything"
with block as image_gen:
with gr.Column():
with gr.Row():
gr.Markdown("## Pokemon Image Generation")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(placeholder="what you want to generate",label="Positive Prompt")
negative_prompt = gr.Textbox(placeholder="what you don't want to generate",label="Negative prompt")
run_btn = gr.Button("image generation", elem_id="select_btn", variant="primary")
with gr.Accordion(label="Advance Options",open=False):
model_selection = gr.Dropdown(choices=["pokemon"],value="pokemon",label="Models")
schduler_selection = gr.Dropdown(choices=["DDIM","Euler","Euler a","UniPC","DPM2 Karras","DPM2 a Karras","PNDM","DPM++ 2M Karras","DPM++ 2M SDE Karras"],value="Euler a",label="Scheduler")
guidance_scale_slider = gr.Slider(label="guidance_scale", minimum=0, maximum=15, value=7.5, step=0.5)
num_images_per_prompt_slider = gr.Slider(label="num_images_per_prompt", minimum=0, maximum=5, value=1, step=1)
height_slider = gr.Slider(label="height", minimum=0, maximum=1024, value=512, step=1)
width_slider = gr.Slider(label="width", minimum=0, maximum=1024, value=512, step=1)
num_inference_steps_slider = gr.Slider(label="num_inference_steps", minimum=0, maximum=150, value=30, step=1)
seed_slider = gr.Slider(label="Seed Slider", minimum=0, maximum=256479815, value=0, step=1)
with gr.Column():
out_img = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True)
run_btn.click(fn=img_args,inputs=[prompt,negative_prompt,model_selection,schduler_selection,height_slider,width_slider,num_inference_steps_slider,guidance_scale_slider,num_images_per_prompt_slider,seed_slider],outputs=[out_img])
image_gen.launch() |