File size: 12,547 Bytes
4d0d76c
 
 
 
 
 
 
609c11f
 
4d0d76c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import numpy as np
import torch
import math
from torch import nn
import torch.nn.functional as F

def get_device():
    # return torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
    return torch.device('cpu')

def scaled_dot_product(q, k, v, mask=None):
    d_k = q.size()[-1]
    scaled = torch.matmul(q, k.transpose(-1, -2)) / math.sqrt(d_k)
    if mask is not None:
        scaled = scaled.permute(1, 0, 2, 3) + mask
        scaled = scaled.permute(1, 0, 2, 3)
    attention = F.softmax(scaled, dim=-1)
    values = torch.matmul(attention, v)
    return values, attention

class PositionalEncoding(nn.Module):
    def __init__(self, d_model, max_sequence_length):
        super().__init__()
        self.max_sequence_length = max_sequence_length
        self.d_model = d_model

    def forward(self):
        even_i = torch.arange(0, self.d_model, 2).float()
        denominator = torch.pow(10000, even_i/self.d_model)
        position = (torch.arange(self.max_sequence_length)
                          .reshape(self.max_sequence_length, 1))
        even_PE = torch.sin(position / denominator)
        odd_PE = torch.cos(position / denominator)
        stacked = torch.stack([even_PE, odd_PE], dim=2)
        PE = torch.flatten(stacked, start_dim=1, end_dim=2)
        return PE

class SentenceEmbedding(nn.Module):
    "For a given sentence, create an embedding"
    def __init__(self, max_sequence_length, d_model, language_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN):
        super().__init__()
        self.vocab_size = len(language_to_index)
        self.max_sequence_length = max_sequence_length
        self.embedding = nn.Embedding(self.vocab_size, d_model)
        self.language_to_index = language_to_index
        self.position_encoder = PositionalEncoding(d_model, max_sequence_length)
        self.dropout = nn.Dropout(p=0.1)
        self.START_TOKEN = START_TOKEN
        self.END_TOKEN = END_TOKEN
        self.PADDING_TOKEN = PADDING_TOKEN
    
    def batch_tokenize(self, batch, start_token, end_token):

        def tokenize(sentence, start_token, end_token):
            sentence_word_indicies = [self.language_to_index[token] for token in list(sentence)]
            if start_token:
                sentence_word_indicies.insert(0, self.language_to_index[self.START_TOKEN])
            if end_token:
                sentence_word_indicies.append(self.language_to_index[self.END_TOKEN])
            for _ in range(len(sentence_word_indicies), self.max_sequence_length):
                sentence_word_indicies.append(self.language_to_index[self.PADDING_TOKEN])
            return torch.tensor(sentence_word_indicies)

        tokenized = []
        for sentence_num in range(len(batch)):
           tokenized.append( tokenize(batch[sentence_num], start_token, end_token) )
        tokenized = torch.stack(tokenized)
        return tokenized.to(get_device())
    
    def forward(self, x, start_token, end_token): # sentence
        x = self.batch_tokenize(x, start_token, end_token)
        x = self.embedding(x)
        pos = self.position_encoder().to(get_device())
        x = self.dropout(x + pos)
        return x


class MultiHeadAttention(nn.Module):
    def __init__(self, d_model, num_heads):
        super().__init__()
        self.d_model = d_model
        self.num_heads = num_heads
        self.head_dim = d_model // num_heads
        self.qkv_layer = nn.Linear(d_model , 3 * d_model)
        self.linear_layer = nn.Linear(d_model, d_model)
    
    def forward(self, x, mask):
        batch_size, sequence_length, d_model = x.size()
        qkv = self.qkv_layer(x)
        qkv = qkv.reshape(batch_size, sequence_length, self.num_heads, 3 * self.head_dim)
        qkv = qkv.permute(0, 2, 1, 3)
        q, k, v = qkv.chunk(3, dim=-1)
        values, attention = scaled_dot_product(q, k, v, mask)
        values = values.permute(0, 2, 1, 3).reshape(batch_size, sequence_length, self.num_heads * self.head_dim)
        out = self.linear_layer(values)
        return out


class LayerNormalization(nn.Module):
    def __init__(self, parameters_shape, eps=1e-5):
        super().__init__()
        self.parameters_shape=parameters_shape
        self.eps=eps
        self.gamma = nn.Parameter(torch.ones(parameters_shape))
        self.beta =  nn.Parameter(torch.zeros(parameters_shape))

    def forward(self, inputs):
        dims = [-(i + 1) for i in range(len(self.parameters_shape))]
        mean = inputs.mean(dim=dims, keepdim=True)
        var = ((inputs - mean) ** 2).mean(dim=dims, keepdim=True)
        std = (var + self.eps).sqrt()
        y = (inputs - mean) / std
        out = self.gamma * y + self.beta
        return out

  
class PositionwiseFeedForward(nn.Module):
    def __init__(self, d_model, hidden, drop_prob=0.1):
        super(PositionwiseFeedForward, self).__init__()
        self.linear1 = nn.Linear(d_model, hidden)
        self.linear2 = nn.Linear(hidden, d_model)
        self.relu = nn.ReLU()
        self.dropout = nn.Dropout(p=drop_prob)

    def forward(self, x):
        x = self.linear1(x)
        x = self.relu(x)
        x = self.dropout(x)
        x = self.linear2(x)
        return x


class EncoderLayer(nn.Module):
    def __init__(self, d_model, ffn_hidden, num_heads, drop_prob):
        super(EncoderLayer, self).__init__()
        self.attention = MultiHeadAttention(d_model=d_model, num_heads=num_heads)
        self.norm1 = LayerNormalization(parameters_shape=[d_model])
        self.dropout1 = nn.Dropout(p=drop_prob)
        self.ffn = PositionwiseFeedForward(d_model=d_model, hidden=ffn_hidden, drop_prob=drop_prob)
        self.norm2 = LayerNormalization(parameters_shape=[d_model])
        self.dropout2 = nn.Dropout(p=drop_prob)

    def forward(self, x, self_attention_mask):
        residual_x = x.clone()
        x = self.attention(x, mask=self_attention_mask)
        x = self.dropout1(x)
        x = self.norm1(x + residual_x)
        residual_x = x.clone()
        x = self.ffn(x)
        x = self.dropout2(x)
        x = self.norm2(x + residual_x)
        return x
    
class SequentialEncoder(nn.Sequential):
    def forward(self, *inputs):
        x, self_attention_mask  = inputs
        for module in self._modules.values():
            x = module(x, self_attention_mask)
        return x

class Encoder(nn.Module):
    def __init__(self, 
                 d_model, 
                 ffn_hidden, 
                 num_heads, 
                 drop_prob, 
                 num_layers,
                 max_sequence_length,
                 language_to_index,
                 START_TOKEN,
                 END_TOKEN, 
                 PADDING_TOKEN):
        super().__init__()
        self.sentence_embedding = SentenceEmbedding(max_sequence_length, d_model, language_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN)
        self.layers = SequentialEncoder(*[EncoderLayer(d_model, ffn_hidden, num_heads, drop_prob)
                                      for _ in range(num_layers)])

    def forward(self, x, self_attention_mask, start_token, end_token):
        x = self.sentence_embedding(x, start_token, end_token)
        x = self.layers(x, self_attention_mask)
        return x


class MultiHeadCrossAttention(nn.Module):
    def __init__(self, d_model, num_heads):
        super().__init__()
        self.d_model = d_model
        self.num_heads = num_heads
        self.head_dim = d_model // num_heads
        self.kv_layer = nn.Linear(d_model , 2 * d_model)
        self.q_layer = nn.Linear(d_model , d_model)
        self.linear_layer = nn.Linear(d_model, d_model)
    
    def forward(self, x, y, mask):
        batch_size, sequence_length, d_model = x.size() # in practice, this is the same for both languages...so we can technically combine with normal attention
        kv = self.kv_layer(x)
        q = self.q_layer(y)
        kv = kv.reshape(batch_size, sequence_length, self.num_heads, 2 * self.head_dim)
        q = q.reshape(batch_size, sequence_length, self.num_heads, self.head_dim)
        kv = kv.permute(0, 2, 1, 3)
        q = q.permute(0, 2, 1, 3)
        k, v = kv.chunk(2, dim=-1)
        values, attention = scaled_dot_product(q, k, v, mask) # We don't need the mask for cross attention, removing in outer function!
        values = values.permute(0, 2, 1, 3).reshape(batch_size, sequence_length, d_model)
        out = self.linear_layer(values)
        return out


class DecoderLayer(nn.Module):
    def __init__(self, d_model, ffn_hidden, num_heads, drop_prob):
        super(DecoderLayer, self).__init__()
        self.self_attention = MultiHeadAttention(d_model=d_model, num_heads=num_heads)
        self.layer_norm1 = LayerNormalization(parameters_shape=[d_model])
        self.dropout1 = nn.Dropout(p=drop_prob)

        self.encoder_decoder_attention = MultiHeadCrossAttention(d_model=d_model, num_heads=num_heads)
        self.layer_norm2 = LayerNormalization(parameters_shape=[d_model])
        self.dropout2 = nn.Dropout(p=drop_prob)

        self.ffn = PositionwiseFeedForward(d_model=d_model, hidden=ffn_hidden, drop_prob=drop_prob)
        self.layer_norm3 = LayerNormalization(parameters_shape=[d_model])
        self.dropout3 = nn.Dropout(p=drop_prob)

    def forward(self, x, y, self_attention_mask, cross_attention_mask):
        _y = y.clone()
        y = self.self_attention(y, mask=self_attention_mask)
        y = self.dropout1(y)
        y = self.layer_norm1(y + _y)

        _y = y.clone()
        y = self.encoder_decoder_attention(x, y, mask=cross_attention_mask)
        y = self.dropout2(y)
        y = self.layer_norm2(y + _y)

        _y = y.clone()
        y = self.ffn(y)
        y = self.dropout3(y)
        y = self.layer_norm3(y + _y)
        return y


class SequentialDecoder(nn.Sequential):
    def forward(self, *inputs):
        x, y, self_attention_mask, cross_attention_mask = inputs
        for module in self._modules.values():
            y = module(x, y, self_attention_mask, cross_attention_mask)
        return y

class Decoder(nn.Module):
    def __init__(self, 
                 d_model, 
                 ffn_hidden, 
                 num_heads, 
                 drop_prob, 
                 num_layers,
                 max_sequence_length,
                 language_to_index,
                 START_TOKEN,
                 END_TOKEN, 
                 PADDING_TOKEN):
        super().__init__()
        self.sentence_embedding = SentenceEmbedding(max_sequence_length, d_model, language_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN)
        self.layers = SequentialDecoder(*[DecoderLayer(d_model, ffn_hidden, num_heads, drop_prob) for _ in range(num_layers)])

    def forward(self, x, y, self_attention_mask, cross_attention_mask, start_token, end_token):
        y = self.sentence_embedding(y, start_token, end_token)
        y = self.layers(x, y, self_attention_mask, cross_attention_mask)
        return y


class Transformer(nn.Module):
    def __init__(self, 
                d_model, 
                ffn_hidden, 
                num_heads, 
                drop_prob, 
                num_layers,
                max_sequence_length, 
                kn_vocab_size,
                english_to_index,
                kannada_to_index,
                START_TOKEN, 
                END_TOKEN, 
                PADDING_TOKEN
                ):
        super().__init__()
        self.encoder = Encoder(d_model, ffn_hidden, num_heads, drop_prob, num_layers, max_sequence_length, english_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN)
        self.decoder = Decoder(d_model, ffn_hidden, num_heads, drop_prob, num_layers, max_sequence_length, kannada_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN)
        self.linear = nn.Linear(d_model, kn_vocab_size)
        self.device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')

    def forward(self, 
                x, 
                y, 
                encoder_self_attention_mask=None, 
                decoder_self_attention_mask=None, 
                decoder_cross_attention_mask=None,
                enc_start_token=False,
                enc_end_token=False,
                dec_start_token=False, 
                dec_end_token=False): 
        x = self.encoder(x, encoder_self_attention_mask, start_token=enc_start_token, end_token=enc_end_token)
        out = self.decoder(x, y, decoder_self_attention_mask, decoder_cross_attention_mask, start_token=dec_start_token, end_token=dec_end_token)
        out = self.linear(out)
        return out