File size: 12,547 Bytes
4d0d76c 609c11f 4d0d76c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
import numpy as np
import torch
import math
from torch import nn
import torch.nn.functional as F
def get_device():
# return torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
return torch.device('cpu')
def scaled_dot_product(q, k, v, mask=None):
d_k = q.size()[-1]
scaled = torch.matmul(q, k.transpose(-1, -2)) / math.sqrt(d_k)
if mask is not None:
scaled = scaled.permute(1, 0, 2, 3) + mask
scaled = scaled.permute(1, 0, 2, 3)
attention = F.softmax(scaled, dim=-1)
values = torch.matmul(attention, v)
return values, attention
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_sequence_length):
super().__init__()
self.max_sequence_length = max_sequence_length
self.d_model = d_model
def forward(self):
even_i = torch.arange(0, self.d_model, 2).float()
denominator = torch.pow(10000, even_i/self.d_model)
position = (torch.arange(self.max_sequence_length)
.reshape(self.max_sequence_length, 1))
even_PE = torch.sin(position / denominator)
odd_PE = torch.cos(position / denominator)
stacked = torch.stack([even_PE, odd_PE], dim=2)
PE = torch.flatten(stacked, start_dim=1, end_dim=2)
return PE
class SentenceEmbedding(nn.Module):
"For a given sentence, create an embedding"
def __init__(self, max_sequence_length, d_model, language_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN):
super().__init__()
self.vocab_size = len(language_to_index)
self.max_sequence_length = max_sequence_length
self.embedding = nn.Embedding(self.vocab_size, d_model)
self.language_to_index = language_to_index
self.position_encoder = PositionalEncoding(d_model, max_sequence_length)
self.dropout = nn.Dropout(p=0.1)
self.START_TOKEN = START_TOKEN
self.END_TOKEN = END_TOKEN
self.PADDING_TOKEN = PADDING_TOKEN
def batch_tokenize(self, batch, start_token, end_token):
def tokenize(sentence, start_token, end_token):
sentence_word_indicies = [self.language_to_index[token] for token in list(sentence)]
if start_token:
sentence_word_indicies.insert(0, self.language_to_index[self.START_TOKEN])
if end_token:
sentence_word_indicies.append(self.language_to_index[self.END_TOKEN])
for _ in range(len(sentence_word_indicies), self.max_sequence_length):
sentence_word_indicies.append(self.language_to_index[self.PADDING_TOKEN])
return torch.tensor(sentence_word_indicies)
tokenized = []
for sentence_num in range(len(batch)):
tokenized.append( tokenize(batch[sentence_num], start_token, end_token) )
tokenized = torch.stack(tokenized)
return tokenized.to(get_device())
def forward(self, x, start_token, end_token): # sentence
x = self.batch_tokenize(x, start_token, end_token)
x = self.embedding(x)
pos = self.position_encoder().to(get_device())
x = self.dropout(x + pos)
return x
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, num_heads):
super().__init__()
self.d_model = d_model
self.num_heads = num_heads
self.head_dim = d_model // num_heads
self.qkv_layer = nn.Linear(d_model , 3 * d_model)
self.linear_layer = nn.Linear(d_model, d_model)
def forward(self, x, mask):
batch_size, sequence_length, d_model = x.size()
qkv = self.qkv_layer(x)
qkv = qkv.reshape(batch_size, sequence_length, self.num_heads, 3 * self.head_dim)
qkv = qkv.permute(0, 2, 1, 3)
q, k, v = qkv.chunk(3, dim=-1)
values, attention = scaled_dot_product(q, k, v, mask)
values = values.permute(0, 2, 1, 3).reshape(batch_size, sequence_length, self.num_heads * self.head_dim)
out = self.linear_layer(values)
return out
class LayerNormalization(nn.Module):
def __init__(self, parameters_shape, eps=1e-5):
super().__init__()
self.parameters_shape=parameters_shape
self.eps=eps
self.gamma = nn.Parameter(torch.ones(parameters_shape))
self.beta = nn.Parameter(torch.zeros(parameters_shape))
def forward(self, inputs):
dims = [-(i + 1) for i in range(len(self.parameters_shape))]
mean = inputs.mean(dim=dims, keepdim=True)
var = ((inputs - mean) ** 2).mean(dim=dims, keepdim=True)
std = (var + self.eps).sqrt()
y = (inputs - mean) / std
out = self.gamma * y + self.beta
return out
class PositionwiseFeedForward(nn.Module):
def __init__(self, d_model, hidden, drop_prob=0.1):
super(PositionwiseFeedForward, self).__init__()
self.linear1 = nn.Linear(d_model, hidden)
self.linear2 = nn.Linear(hidden, d_model)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(p=drop_prob)
def forward(self, x):
x = self.linear1(x)
x = self.relu(x)
x = self.dropout(x)
x = self.linear2(x)
return x
class EncoderLayer(nn.Module):
def __init__(self, d_model, ffn_hidden, num_heads, drop_prob):
super(EncoderLayer, self).__init__()
self.attention = MultiHeadAttention(d_model=d_model, num_heads=num_heads)
self.norm1 = LayerNormalization(parameters_shape=[d_model])
self.dropout1 = nn.Dropout(p=drop_prob)
self.ffn = PositionwiseFeedForward(d_model=d_model, hidden=ffn_hidden, drop_prob=drop_prob)
self.norm2 = LayerNormalization(parameters_shape=[d_model])
self.dropout2 = nn.Dropout(p=drop_prob)
def forward(self, x, self_attention_mask):
residual_x = x.clone()
x = self.attention(x, mask=self_attention_mask)
x = self.dropout1(x)
x = self.norm1(x + residual_x)
residual_x = x.clone()
x = self.ffn(x)
x = self.dropout2(x)
x = self.norm2(x + residual_x)
return x
class SequentialEncoder(nn.Sequential):
def forward(self, *inputs):
x, self_attention_mask = inputs
for module in self._modules.values():
x = module(x, self_attention_mask)
return x
class Encoder(nn.Module):
def __init__(self,
d_model,
ffn_hidden,
num_heads,
drop_prob,
num_layers,
max_sequence_length,
language_to_index,
START_TOKEN,
END_TOKEN,
PADDING_TOKEN):
super().__init__()
self.sentence_embedding = SentenceEmbedding(max_sequence_length, d_model, language_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN)
self.layers = SequentialEncoder(*[EncoderLayer(d_model, ffn_hidden, num_heads, drop_prob)
for _ in range(num_layers)])
def forward(self, x, self_attention_mask, start_token, end_token):
x = self.sentence_embedding(x, start_token, end_token)
x = self.layers(x, self_attention_mask)
return x
class MultiHeadCrossAttention(nn.Module):
def __init__(self, d_model, num_heads):
super().__init__()
self.d_model = d_model
self.num_heads = num_heads
self.head_dim = d_model // num_heads
self.kv_layer = nn.Linear(d_model , 2 * d_model)
self.q_layer = nn.Linear(d_model , d_model)
self.linear_layer = nn.Linear(d_model, d_model)
def forward(self, x, y, mask):
batch_size, sequence_length, d_model = x.size() # in practice, this is the same for both languages...so we can technically combine with normal attention
kv = self.kv_layer(x)
q = self.q_layer(y)
kv = kv.reshape(batch_size, sequence_length, self.num_heads, 2 * self.head_dim)
q = q.reshape(batch_size, sequence_length, self.num_heads, self.head_dim)
kv = kv.permute(0, 2, 1, 3)
q = q.permute(0, 2, 1, 3)
k, v = kv.chunk(2, dim=-1)
values, attention = scaled_dot_product(q, k, v, mask) # We don't need the mask for cross attention, removing in outer function!
values = values.permute(0, 2, 1, 3).reshape(batch_size, sequence_length, d_model)
out = self.linear_layer(values)
return out
class DecoderLayer(nn.Module):
def __init__(self, d_model, ffn_hidden, num_heads, drop_prob):
super(DecoderLayer, self).__init__()
self.self_attention = MultiHeadAttention(d_model=d_model, num_heads=num_heads)
self.layer_norm1 = LayerNormalization(parameters_shape=[d_model])
self.dropout1 = nn.Dropout(p=drop_prob)
self.encoder_decoder_attention = MultiHeadCrossAttention(d_model=d_model, num_heads=num_heads)
self.layer_norm2 = LayerNormalization(parameters_shape=[d_model])
self.dropout2 = nn.Dropout(p=drop_prob)
self.ffn = PositionwiseFeedForward(d_model=d_model, hidden=ffn_hidden, drop_prob=drop_prob)
self.layer_norm3 = LayerNormalization(parameters_shape=[d_model])
self.dropout3 = nn.Dropout(p=drop_prob)
def forward(self, x, y, self_attention_mask, cross_attention_mask):
_y = y.clone()
y = self.self_attention(y, mask=self_attention_mask)
y = self.dropout1(y)
y = self.layer_norm1(y + _y)
_y = y.clone()
y = self.encoder_decoder_attention(x, y, mask=cross_attention_mask)
y = self.dropout2(y)
y = self.layer_norm2(y + _y)
_y = y.clone()
y = self.ffn(y)
y = self.dropout3(y)
y = self.layer_norm3(y + _y)
return y
class SequentialDecoder(nn.Sequential):
def forward(self, *inputs):
x, y, self_attention_mask, cross_attention_mask = inputs
for module in self._modules.values():
y = module(x, y, self_attention_mask, cross_attention_mask)
return y
class Decoder(nn.Module):
def __init__(self,
d_model,
ffn_hidden,
num_heads,
drop_prob,
num_layers,
max_sequence_length,
language_to_index,
START_TOKEN,
END_TOKEN,
PADDING_TOKEN):
super().__init__()
self.sentence_embedding = SentenceEmbedding(max_sequence_length, d_model, language_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN)
self.layers = SequentialDecoder(*[DecoderLayer(d_model, ffn_hidden, num_heads, drop_prob) for _ in range(num_layers)])
def forward(self, x, y, self_attention_mask, cross_attention_mask, start_token, end_token):
y = self.sentence_embedding(y, start_token, end_token)
y = self.layers(x, y, self_attention_mask, cross_attention_mask)
return y
class Transformer(nn.Module):
def __init__(self,
d_model,
ffn_hidden,
num_heads,
drop_prob,
num_layers,
max_sequence_length,
kn_vocab_size,
english_to_index,
kannada_to_index,
START_TOKEN,
END_TOKEN,
PADDING_TOKEN
):
super().__init__()
self.encoder = Encoder(d_model, ffn_hidden, num_heads, drop_prob, num_layers, max_sequence_length, english_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN)
self.decoder = Decoder(d_model, ffn_hidden, num_heads, drop_prob, num_layers, max_sequence_length, kannada_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN)
self.linear = nn.Linear(d_model, kn_vocab_size)
self.device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
def forward(self,
x,
y,
encoder_self_attention_mask=None,
decoder_self_attention_mask=None,
decoder_cross_attention_mask=None,
enc_start_token=False,
enc_end_token=False,
dec_start_token=False,
dec_end_token=False):
x = self.encoder(x, encoder_self_attention_mask, start_token=enc_start_token, end_token=enc_end_token)
out = self.decoder(x, y, decoder_self_attention_mask, decoder_cross_attention_mask, start_token=dec_start_token, end_token=dec_end_token)
out = self.linear(out)
return out |