File size: 13,449 Bytes
2ae5419
 
 
 
4265660
2ae5419
4265660
 
 
 
 
2ae5419
 
 
 
4265660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ae5419
4265660
 
 
 
 
 
 
2ae5419
4265660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ae5419
4265660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ae5419
4265660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import streamlit as st
from streamlit_lottie import st_lottie
import requests

# Function to load Lottie animation from a URL
def load_lottie_url(url: str):
    try:
        r = requests.get(url)
        if r.status_code == 200:
            return r.json()
    except requests.exceptions.RequestException:
        return None

# Function to display the content of each page
def show_content(topic):
    if topic == "Introduction to Data Science":
        subtopic = st.sidebar.radio("Explore More", [
            "Introduction",
            "Understanding Intelligence",
            "AI Tools: ML, DL, and Gen-AI",
            "Real-Life Analogies and Examples",
            "What is Data Science?",
            "The Role of a Data Scientist",
            "Why AI and Data Science Matter",
            "Did You Know?"
        ])
        if subtopic == "Introduction":
            st.title("Understanding Data Science and Artificial Intelligence 🌟")
            st.subheader("Overview of AI and Data Science")
            st.write("""
            Artificial Intelligence (AI) and Data Science have become buzzwords in today's tech-driven world.
            But what do they really mean, and why are they so significant? Let’s explore these fascinating concepts step by step!
            """)
            lottie_url = "https://assets4.lottiefiles.com/packages/lf20_tcbkqj.json"
            animation_data = load_lottie_url(lottie_url)
            if animation_data:
                st_lottie(animation_data, speed=1, width=600, height=400)
            else:
                st.write("Unable to load animation.")

        elif subtopic == "Understanding Intelligence":
            st.title("Understanding Intelligence")
            st.subheader("What is Natural Intelligence? 🐾")
            st.write("""
            **Definition**: NI refers to the intelligence naturally present in living beings.
            **Examples**:
            - A dog learning a trick. πŸ•
            - Humans solving puzzles or making everyday decisions. 🧠
            """)
            st.subheader("What is Artificial Intelligence? πŸ€–")
            st.write("""
            **Definition**: Artificial intelligence (AI) is man-made intelligence where machines mimic human intelligence to perform tasks.
            **Real-Life Examples**:
            - Netflix recommending shows you’d love. 🎬
            - Google Maps finding the fastest route. πŸ—ΊοΈ
            - Alexa answering your questions. πŸŽ™οΈ
            """)

        elif subtopic == "AI Tools: ML, DL, and Gen-AI":
            st.title("AI Tools: ML, DL, and Gen-AI")
            st.subheader("Machine Learning (ML) πŸ–₯️")
            st.write("""
            - **What It Does**: ML enables machines to learn from patterns in data and make decisions.
            - **How It Works**: Similar to teaching a toddler to recognize fruits, ML algorithms process large datasets to "learn" and predict outcomes.
            - **Real-Life Applications**: Spam email detection πŸ“§, Predicting stock prices πŸ“ˆ.
            """)
            st.subheader("Deep Learning (DL) 🀿")
            st.write("""
            - **What It Does**: DL uses neural networks to process and analyze complex data.
            - **How It Works**: DL processes data in layers, enabling machines to perform sophisticated tasks like facial recognition and medical imaging.
            - **Real-Life Applications**: Self-driving cars πŸš—, Virtual assistants like Siri and Alexa. πŸŽ™οΈ
            """)
            st.subheader("Generative AI (Gen-AI) 🎨")
            st.write("""
            - **What It Does**: Gen-AI enables machines to generate new content like text, images, and music.
            - **How It Works**: By learning patterns from data, Gen-AI creates outputs that feel original and human-like.
            - **Real-Life Applications**: ChatGPT (text generation), DALLΒ·E (image creation).
            """)

        elif subtopic == "Real-Life Analogies and Examples":
            st.title("Real-Life Analogies and Examples")
            st.subheader("Analogy: Tools Are Like Pens and Pencils")
            st.write("""
            - ML: Learns patterns (like sketching with a pencil).
            - DL: Adds depth and detail (like using a pen).
            - Gen-AI: Creates entirely new outputs (like turning sketches into colorful artwork).
            """)
            st.subheader("Learning vs. Generating: The Art Example πŸ‘©β€πŸŽ¨")
            st.write("""
            Think of a child learning to draw:
            - First, they learn the basics of drawing.
            - Then they generate their own unique artwork.
            
            AI follows the same process:
            - Learning: ML and DL handle this part.
            - Generating: Gen-AI takes over to create new outputs.
            """)

        elif subtopic == "What is Data Science?":
            st.title("What is Data Science? πŸ“Š")
            st.write("""
            Data Science is the art of extracting meaningful insights from raw data. It combines AI with statistics, computer science, and domain expertise to solve real-world problems.
            **Key Components of Data Science**:
            - **Data Collection**: Gathering information from various sources.
            - **Data Analysis**: Using tools to find patterns and trends.
            - **Data Visualization**: Presenting findings through charts and graphs.
            """)

        elif subtopic == "The Role of a Data Scientist":
            st.title("The Role of a Data Scientist")
            st.write("""
            A Data Scientist plays a crucial role in:
            - Building predictive models.
            - Analyzing customer behavior.
            - Designing solutions for business challenges.
            
            **Tools Used**: Python, R, SQL, Tableau, etc.
            """)

        elif subtopic == "Why AI and Data Science Matter":
            st.title("Why AI and Data Science Matter")
            st.write("""
            AI and Data Science are transforming industries by:
            - Automating tasks.
            - Enhancing decision-making.
            - Unlocking creative possibilities.
            
            **Fun Fact**: By 2030, AI is expected to add $15.7 trillion to the global economy. πŸš€
            """)

        elif subtopic == "Did You Know?":
            st.title("Did You Know?")
            st.write("""
            **AI is already being used to**:
            - Detect diseases in medical imaging.
            - Automate farming for higher crop yields.
            - Generate movie scripts and music albums.
            """)


# import streamlit as st
# from streamlit_lottie import st_lottie
# import requests

# # Function to load Lottie animations
# def load_lottie_url(url: str):
#     r = requests.get(url)
#     if r.status_code == 200:
#         return r.json()
#     else:
#         return None

# # Function to display the content of each page
# def show_content(topic):
#     if topic == "Introduction":
#         st.title("Understanding Data Science and Artificial Intelligence 🌟")
#         st.subheader("Overview of AI and Data Science")
#         st.write("""
#         Artificial Intelligence (AI) and Data Science have become buzzwords in today's tech-driven world.
#         But what do they really mean, and why are they so significant? Let’s explore these fascinating concepts step by step!
#         """)
        
#         # Load the Lottie animation
#         lottie_url = "https://assets4.lottiefiles.com/packages/lf20_tcbkqj.json"
#         animation_data = load_lottie_url(lottie_url)
#         if animation_data:
#             st_lottie(animation_data, speed=1, width=600, height=400)
#         else:
#             st.write("Unable to load animation.")
        
#     elif topic == "Understanding Intelligence":
#         st.title("Understanding Intelligence")
#         st.subheader("What is Natural Intelligence? 🐾")
#         st.write("""
#         **Definition**: NI refers to the intelligence naturally present in living beings.
#         **Examples**:
#         - A dog learning a trick. πŸ•
#         - Humans solving puzzles or making everyday decisions. 🧠
#         """)
#         st.subheader("What is Artificial Intelligence? πŸ€–")
#         st.write("""
#         **Definition**: Artificial intelligence (AI) is man-made intelligence where machines mimic human intelligence to perform tasks.
#         **Real-Life Examples**:
#         - Netflix recommending shows you’d love. 🎬
#         - Google Maps finding the fastest route. πŸ—ΊοΈ
#         - Alexa answering your questions. πŸŽ™οΈ
#         """)

#     elif topic == "AI Tools: ML, DL, and Gen-AI":
#         st.title("AI Tools: ML, DL, and Gen-AI")
#         st.subheader("Machine Learning (ML) πŸ–₯️")
#         st.write("""
#         - **What It Does**: ML enables machines to learn from patterns in data and make decisions.
#         - **How It Works**: Similar to teaching a toddler to recognize fruits, ML algorithms process large datasets to "learn" and predict outcomes.
#         - **Real-Life Applications**: Spam email detection πŸ“§, Predicting stock prices πŸ“ˆ.
#         """)
#         st.subheader("Deep Learning (DL) 🀿")
#         st.write("""
#         - **What It Does**: DL uses neural networks to process and analyze complex data.
#         - **How It Works**: DL processes data in layers, enabling machines to perform sophisticated tasks like facial recognition and medical imaging.
#         - **Real-Life Applications**: Self-driving cars πŸš—, Virtual assistants like Siri and Alexa. πŸŽ™οΈ
#         """)
#         st.subheader("Generative AI (Gen-AI) 🎨")
#         st.write("""
#         - **What It Does**: Gen-AI enables machines to generate new content like text, images, and music.
#         - **How It Works**: By learning patterns from data, Gen-AI creates outputs that feel original and human-like.
#         - **Real-Life Applications**: ChatGPT (text generation), DALLΒ·E (image creation).
#         """)

#     elif topic == "Real-Life Analogies and Examples":
#         st.title("Real-Life Analogies and Examples")
#         st.subheader("Analogy: Tools Are Like Pens and Pencils")
#         st.write("""
#         - ML: Learns patterns (like sketching with a pencil).
#         - DL: Adds depth and detail (like using a pen).
#         - Gen-AI: Creates entirely new outputs (like turning sketches into colorful artwork).
#         """)
#         st.subheader("Learning vs. Generating: The Art Example πŸ‘©β€πŸŽ¨")
#         st.write("""
#         Think of a child learning to draw:
#         - First, they learn the basics of drawing.
#         - Then they generate their own unique artwork.
        
#         AI follows the same process:
#         - Learning: ML and DL handle this part.
#         - Generating: Gen-AI takes over to create new outputs.
#         """)

#     elif topic == "What is Data Science?":
#         st.title("What is Data Science? πŸ“Š")
#         st.write("""
#         Data Science is the art of extracting meaningful insights from raw data. It combines AI with statistics, computer science, and domain expertise to solve real-world problems.
#         **Key Components of Data Science**:
#         - **Data Collection**: Gathering information from various sources.
#         - **Data Analysis**: Using tools to find patterns and trends.
#         - **Data Visualization**: Presenting findings through charts and graphs.
#         """)

#     elif topic == "The Role of a Data Scientist":
#         st.title("The Role of a Data Scientist")
#         st.write("""
#         A Data Scientist plays a crucial role in:
#         - Building predictive models.
#         - Analyzing customer behavior.
#         - Designing solutions for business challenges.
        
#         **Tools Used**: Python, R, SQL, Tableau, etc.
#         """)

#     elif topic == "Why AI and Data Science Matter":
#         st.title("Why AI and Data Science Matter")
#         st.write("""
#         AI and Data Science are transforming industries by:
#         - Automating tasks.
#         - Enhancing decision-making.
#         - Unlocking creative possibilities.

#         **Fun Fact**: By 2030, AI is expected to add $15.7 trillion to the global economy. πŸš€
#         """)

#     elif topic == "Did You Know?":
#         st.title("Did You Know?")
#         st.write("""
#         **AI is already being used to**:
#         - Detect diseases in medical imaging.
#         - Automate farming for higher crop yields.
#         - Generate movie scripts and music albums.
#         """)

# # Set up sidebar navigation
# topics = [
#     "Introduction",
#     "Understanding Intelligence",
#     "AI Tools: ML, DL, and Gen-AI",
#     "Real-Life Analogies and Examples",
#     "What is Data Science?",
#     "The Role of a Data Scientist",
#     "Why AI and Data Science Matter",
#     "Did You Know?"
# ]

# st.sidebar.title("Topics")
# selection = st.sidebar.radio("Go to", topics)

# # Initialize session state with the first topic as the default
# if "page" not in st.session_state:
#     st.session_state.page = topics[0]

# # Update session state automatically when sidebar selection changes
# st.session_state.page = selection

# # Display the selected content
# show_content(st.session_state.page)