Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,446 Bytes
9eb3654 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
""" OpenAI pretrained model functions
Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
"""
import os
import warnings
from typing import List, Optional, Union
import torch
from .model import build_model_from_openai_state_dict, convert_weights_to_lp, get_cast_dtype
from .pretrained import get_pretrained_url, list_pretrained_models_by_tag, download_pretrained_from_url
__all__ = ["list_openai_models", "load_openai_model"]
def list_openai_models() -> List[str]:
"""Returns the names of available CLIP models"""
return list_pretrained_models_by_tag('openai')
def load_openai_model(
name: str,
precision: Optional[str] = None,
device: Optional[Union[str, torch.device]] = None,
jit: bool = True,
cache_dir: Optional[str] = None,
):
"""Load a CLIP model
Parameters
----------
name : str
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
precision: str
Model precision, if None defaults to 'fp32' if device == 'cpu' else 'fp16'.
device : Union[str, torch.device]
The device to put the loaded model
jit : bool
Whether to load the optimized JIT model (default) or more hackable non-JIT model.
cache_dir : Optional[str]
The directory to cache the downloaded model weights
Returns
-------
model : torch.nn.Module
The CLIP model
preprocess : Callable[[PIL.Image], torch.Tensor]
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
"""
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
if precision is None:
precision = 'fp32' if device == 'cpu' else 'fp16'
if get_pretrained_url(name, 'openai'):
model_path = download_pretrained_from_url(get_pretrained_url(name, 'openai'), cache_dir=cache_dir)
elif os.path.isfile(name):
model_path = name
else:
raise RuntimeError(f"Model {name} not found; available models = {list_openai_models()}")
try:
# loading JIT archive
model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval()
state_dict = None
except RuntimeError:
# loading saved state dict
if jit:
warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
jit = False
state_dict = torch.load(model_path, map_location="cpu")
if not jit:
# Build a non-jit model from the OpenAI jitted model state dict
cast_dtype = get_cast_dtype(precision)
try:
model = build_model_from_openai_state_dict(state_dict or model.state_dict(), cast_dtype=cast_dtype)
except KeyError:
sd = {k[7:]: v for k, v in state_dict["state_dict"].items()}
model = build_model_from_openai_state_dict(sd, cast_dtype=cast_dtype)
# model from OpenAI state dict is in manually cast fp16 mode, must be converted for AMP/fp32/bf16 use
model = model.to(device)
if precision.startswith('amp') or precision == 'fp32':
model.float()
elif precision == 'bf16':
convert_weights_to_lp(model, dtype=torch.bfloat16)
return model
# patch the device names
device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
def patch_device(module):
try:
graphs = [module.graph] if hasattr(module, "graph") else []
except RuntimeError:
graphs = []
if hasattr(module, "forward1"):
graphs.append(module.forward1.graph)
for graph in graphs:
for node in graph.findAllNodes("prim::Constant"):
if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"):
node.copyAttributes(device_node)
model.apply(patch_device)
patch_device(model.encode_image)
patch_device(model.encode_text)
# patch dtype to float32 (typically for CPU)
if precision == 'fp32':
float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
float_node = float_input.node()
def patch_float(module):
try:
graphs = [module.graph] if hasattr(module, "graph") else []
except RuntimeError:
graphs = []
if hasattr(module, "forward1"):
graphs.append(module.forward1.graph)
for graph in graphs:
for node in graph.findAllNodes("aten::to"):
inputs = list(node.inputs())
for i in [1, 2]: # dtype can be the second or third argument to aten::to()
if inputs[i].node()["value"] == 5:
inputs[i].node().copyAttributes(float_node)
model.apply(patch_float)
patch_float(model.encode_image)
patch_float(model.encode_text)
model.float()
# ensure image_size attr available at consistent location for both jit and non-jit
model.visual.image_size = model.input_resolution.item()
return model
|