File size: 14,689 Bytes
b177539
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Base class for the global alignement procedure
# --------------------------------------------------------
from copy import deepcopy

import numpy as np
import torch
import torch.nn as nn
import roma
from copy import deepcopy
import tqdm

from dust3r.utils.geometry import inv, geotrf
from dust3r.utils.device import to_numpy
from dust3r.utils.image import rgb
from dust3r.viz import SceneViz, segment_sky, auto_cam_size
from dust3r.optim_factory import adjust_learning_rate_by_lr

from dust3r.cloud_opt.commons import (edge_str, ALL_DISTS, NoGradParamDict, get_imshapes, signed_expm1, signed_log1p,
                                      cosine_schedule, linear_schedule, get_conf_trf)
import dust3r.cloud_opt.init_im_poses as init_fun


class BasePCOptimizer (nn.Module):
    """ Optimize a global scene, given a list of pairwise observations.
    Graph node: images
    Graph edges: observations = (pred1, pred2)
    """

    def __init__(self, *args, **kwargs):
        if len(args) == 1 and len(kwargs) == 0:
            other = deepcopy(args[0])
            attrs = '''edges is_symmetrized dist n_imgs pred_i pred_j imshapes 
                        min_conf_thr conf_thr conf_i conf_j im_conf
                        base_scale norm_pw_scale POSE_DIM pw_poses 
                        pw_adaptors pw_adaptors has_im_poses rand_pose imgs'''.split()
            self.__dict__.update({k: other[k] for k in attrs})
        else:
            self._init_from_views(*args, **kwargs)

    def _init_from_views(self, view1, view2, pred1, pred2,
                         dist='l1',
                         conf='log',
                         min_conf_thr=3,
                         base_scale=0.5,
                         allow_pw_adaptors=False,
                         pw_break=20,
                         rand_pose=torch.randn,
                         iterationsCount=None):
        super().__init__()
        if not isinstance(view1['idx'], list):
            view1['idx'] = view1['idx'].tolist()
        if not isinstance(view2['idx'], list):
            view2['idx'] = view2['idx'].tolist()
        self.edges = [(int(i), int(j)) for i, j in zip(view1['idx'], view2['idx'])]
        self.is_symmetrized = set(self.edges) == {(j, i) for i, j in self.edges}
        self.dist = ALL_DISTS[dist]

        self.n_imgs = self._check_edges()

        # input data
        pred1_pts = pred1['pts3d']
        pred2_pts = pred2['pts3d_in_other_view']
        self.pred_i = NoGradParamDict({ij: pred1_pts[n] for n, ij in enumerate(self.str_edges)})
        self.pred_j = NoGradParamDict({ij: pred2_pts[n] for n, ij in enumerate(self.str_edges)})
        self.imshapes = get_imshapes(self.edges, pred1_pts, pred2_pts)

        # work in log-scale with conf
        pred1_conf = pred1['conf']
        pred2_conf = pred2['conf']
        self.min_conf_thr = min_conf_thr
        self.conf_trf = get_conf_trf(conf)

        self.conf_i = NoGradParamDict({ij: pred1_conf[n] for n, ij in enumerate(self.str_edges)})
        self.conf_j = NoGradParamDict({ij: pred2_conf[n] for n, ij in enumerate(self.str_edges)})
        self.im_conf = self._compute_img_conf(pred1_conf, pred2_conf)

        # pairwise pose parameters
        self.base_scale = base_scale
        self.norm_pw_scale = True
        self.pw_break = pw_break
        self.POSE_DIM = 7
        self.pw_poses = nn.Parameter(rand_pose((self.n_edges, 1+self.POSE_DIM)))  # pairwise poses
        self.pw_adaptors = nn.Parameter(torch.zeros((self.n_edges, 2)))  # slight xy/z adaptation
        self.pw_adaptors.requires_grad_(allow_pw_adaptors)
        self.has_im_poses = False
        self.rand_pose = rand_pose

        # possibly store images for show_pointcloud
        self.imgs = None
        if 'img' in view1 and 'img' in view2:
            imgs = [torch.zeros((3,)+hw) for hw in self.imshapes]
            for v in range(len(self.edges)):
                idx = view1['idx'][v]
                imgs[idx] = view1['img'][v]
                idx = view2['idx'][v]
                imgs[idx] = view2['img'][v]
            self.imgs = rgb(imgs)

    @property
    def n_edges(self):
        return len(self.edges)

    @property
    def str_edges(self):
        return [edge_str(i, j) for i, j in self.edges]

    @property
    def imsizes(self):
        return [(w, h) for h, w in self.imshapes]

    @property
    def device(self):
        return next(iter(self.parameters())).device

    def state_dict(self, trainable=True):
        all_params = super().state_dict()
        return {k: v for k, v in all_params.items() if k.startswith(('_', 'pred_i.', 'pred_j.', 'conf_i.', 'conf_j.')) != trainable}

    def load_state_dict(self, data):
        return super().load_state_dict(self.state_dict(trainable=False) | data)

    def _check_edges(self):
        indices = sorted({i for edge in self.edges for i in edge})
        assert indices == list(range(len(indices))), 'bad pair indices: missing values '
        return len(indices)

    @torch.no_grad()
    def _compute_img_conf(self, pred1_conf, pred2_conf):
        im_conf = nn.ParameterList([torch.zeros(hw, device=self.device) for hw in self.imshapes])
        for e, (i, j) in enumerate(self.edges):
            im_conf[i] = torch.maximum(im_conf[i], pred1_conf[e])
            im_conf[j] = torch.maximum(im_conf[j], pred2_conf[e])
        return im_conf

    def get_adaptors(self): # 公式(5)中的σ_e
        adapt = self.pw_adaptors
        adapt = torch.cat((adapt[:, 0:1], adapt), dim=-1)  # (scale_xy, scale_xy, scale_z)
        if self.norm_pw_scale:  # normalize so that the product == 1
            adapt = adapt - adapt.mean(dim=1, keepdim=True) # 归一化
        return (adapt / self.pw_break).exp() # TODO gys:公式(5)中的σ_e是什么?

    def _get_poses(self, poses): # self.im_poses 或者 self.pw_poses
        # normalize rotation
        Q = poses[:, :4]
        T = signed_expm1(poses[:, 4:7])
        RT = roma.RigidUnitQuat(Q, T).normalize().to_homogeneous()
        return RT

    def _set_pose(self, poses, idx, R, T=None, scale=None, force=False):
        # all poses == cam-to-world
        pose = poses[idx]
        if not (pose.requires_grad or force):
            return pose

        if R.shape == (4, 4):
            assert T is None
            T = R[:3, 3]
            R = R[:3, :3]

        if R is not None:
            pose.data[0:4] = roma.rotmat_to_unitquat(R)
        if T is not None:
            pose.data[4:7] = signed_log1p(T / (scale or 1))  # translation is function of scale

        if scale is not None:
            assert poses.shape[-1] in (8, 13)
            pose.data[-1] = np.log(float(scale))
        return pose

    def get_pw_norm_scale_factor(self):
        if self.norm_pw_scale:
            # normalize scales so that things cannot go south
            # we want that exp(scale) ~= self.base_scale
            return (np.log(self.base_scale) - self.pw_poses[:, -1].mean()).exp()
        else:
            return 1  # don't norm scale for known poses

    def get_pw_scale(self):
        scale = self.pw_poses[:, -1].exp()  # (n_edges,)
        scale = scale * self.get_pw_norm_scale_factor()
        return scale

    def get_pw_poses(self):  # cam to world
        RT = self._get_poses(self.pw_poses)
        scaled_RT = RT.clone()
        scaled_RT[:, :3] *= self.get_pw_scale().view(-1, 1, 1)  # scale the rotation AND translation
        return scaled_RT

    def get_masks(self):
        return [(conf > self.min_conf_thr) for conf in self.im_conf]

    def depth_to_pts3d(self):
        raise NotImplementedError()

    def get_pts3d(self, raw=False):
        res = self.depth_to_pts3d()
        if not raw:
            res = [dm[:h*w].view(h, w, 3) for dm, (h, w) in zip(res, self.imshapes)]
        return res

    def _set_focal(self, idx, focal, force=False):
        raise NotImplementedError()

    def get_focals(self):
        raise NotImplementedError()

    def get_known_focal_mask(self):
        raise NotImplementedError()

    def get_principal_points(self):
        raise NotImplementedError()

    def get_conf(self, mode=None):
        trf = self.conf_trf if mode is None else get_conf_trf(mode)
        return [trf(c) for c in self.im_conf]

    def get_im_poses(self):
        raise NotImplementedError()

    def _set_depthmap(self, idx, depth, force=False):
        raise NotImplementedError()

    def get_depthmaps(self, raw=False):
        raise NotImplementedError()

    @torch.no_grad()
    def clean_pointcloud(self, tol=0.001, max_bad_conf=0):
        """ Method: 
        1) express all 3d points in each camera coordinate frame
        2) if they're in front of a depthmap --> then lower their confidence
        """
        assert 0 <= tol < 1
        cams = inv(self.get_im_poses())
        K = self.get_intrinsics()
        depthmaps = self.get_depthmaps()
        res = deepcopy(self)

        for i, pts3d in enumerate(self.depth_to_pts3d()):
            for j in range(self.n_imgs):
                if i == j:
                    continue

                # project 3dpts in other view
                Hi, Wi = self.imshapes[i]
                Hj, Wj = self.imshapes[j]
                proj = geotrf(cams[j], pts3d[:Hi*Wi]).reshape(Hi, Wi, 3)
                proj_depth = proj[:, :, 2]
                u, v = geotrf(K[j], proj, norm=1, ncol=2).round().long().unbind(-1)

                # check which points are actually in the visible cone
                msk_i = (proj_depth > 0) & (0 <= u) & (u < Wj) & (0 <= v) & (v < Hj)
                msk_j = v[msk_i], u[msk_i]

                # find bad points = those in front but less confident
                bad_points = (proj_depth[msk_i] < (1-tol) * depthmaps[j][msk_j]
                              ) & (res.im_conf[i][msk_i] < res.im_conf[j][msk_j])

                bad_msk_i = msk_i.clone()
                bad_msk_i[msk_i] = bad_points
                res.im_conf[i][bad_msk_i] = res.im_conf[i][bad_msk_i].clip_(max=max_bad_conf)

        return res

    def forward(self, ret_details=False):
        pw_poses = self.get_pw_poses()  # cam-to-world
        pw_adapt = self.get_adaptors()
        proj_pts3d = self.get_pts3d()
        # pre-compute pixel weights
        weight_i = {i_j: self.conf_trf(c) for i_j, c in self.conf_i.items()}
        weight_j = {i_j: self.conf_trf(c) for i_j, c in self.conf_j.items()}

        loss = 0
        if ret_details:
            details = -torch.ones((self.n_imgs, self.n_imgs))

        for e, (i, j) in enumerate(self.edges):
            i_j = edge_str(i, j)
            # distance in image i and j
            aligned_pred_i = geotrf(pw_poses[e], pw_adapt[e] * self.pred_i[i_j])
            aligned_pred_j = geotrf(pw_poses[e], pw_adapt[e] * self.pred_j[i_j])
            li = self.dist(proj_pts3d[i], aligned_pred_i, weight=weight_i[i_j]).mean()
            lj = self.dist(proj_pts3d[j], aligned_pred_j, weight=weight_j[i_j]).mean()
            loss = loss + li + lj

            if ret_details:
                details[i, j] = li + lj
        loss /= self.n_edges  # average over all pairs

        if ret_details:
            return loss, details
        return loss

    def compute_global_alignment(self, init=None, niter_PnP=10, **kw):
        if init is None:
            pass
        elif init == 'msp' or init == 'mst':
            # ==============3.3.Downstream Applications:主要是为3.4. Global Alignment中的公式(5)初始化内外参矩阵和待估计的世界坐标系的坐标============
            init_fun.init_minimum_spanning_tree(self, niter_PnP=niter_PnP)
        elif init == 'known_poses':
            init_fun.init_from_known_poses(self, min_conf_thr=self.min_conf_thr, niter_PnP=niter_PnP)
        else:
            raise ValueError(f'bad value for {init=}')

        global_alignment_loop(self, **kw) # 3.4. Global Alignment:梯度下降公式(5)

    @torch.no_grad()
    def mask_sky(self):
        res = deepcopy(self)
        for i in range(self.n_imgs):
            sky = segment_sky(self.imgs[i])
            res.im_conf[i][sky] = 0
        return res

    def show(self, show_pw_cams=False, show_pw_pts3d=False, cam_size=None, **kw):
        viz = SceneViz()
        if self.imgs is None:
            colors = np.random.randint(0, 256, size=(self.n_imgs, 3))
            colors = list(map(tuple, colors.tolist()))
            for n in range(self.n_imgs):
                viz.add_pointcloud(self.get_pts3d()[n], colors[n], self.get_masks()[n])
        else:
            viz.add_pointcloud(self.get_pts3d(), self.imgs, self.get_masks())
            colors = np.random.randint(256, size=(self.n_imgs, 3))

        # camera poses
        im_poses = to_numpy(self.get_im_poses())
        if cam_size is None:
            cam_size = auto_cam_size(im_poses)
        viz.add_cameras(im_poses, self.get_focals(), colors=colors,
                        images=self.imgs, imsizes=self.imsizes, cam_size=cam_size)
        if show_pw_cams:
            pw_poses = self.get_pw_poses()
            viz.add_cameras(pw_poses, color=(192, 0, 192), cam_size=cam_size)

            if show_pw_pts3d:
                pts = [geotrf(pw_poses[e], self.pred_i[edge_str(i, j)]) for e, (i, j) in enumerate(self.edges)]
                viz.add_pointcloud(pts, (128, 0, 128))

        viz.show(**kw)
        return viz


def global_alignment_loop(net, lr=0.01, niter=300, schedule='cosine', lr_min=1e-6, verbose=False):
    params = [p for p in net.parameters() if p.requires_grad]
    if not params:
        return net

    if verbose:
        print([name for name, value in net.named_parameters() if value.requires_grad])

    lr_base = lr
    optimizer = torch.optim.Adam(params, lr=lr, betas=(0.9, 0.9))

    with tqdm.tqdm(total=niter) as bar:
        while bar.n < bar.total:
            t = bar.n / bar.total

            if schedule == 'cosine':
                lr = cosine_schedule(t, lr_base, lr_min)
            elif schedule == 'linear':
                lr = linear_schedule(t, lr_base, lr_min)
            else:
                raise ValueError(f'bad lr {schedule=}')
            adjust_learning_rate_by_lr(optimizer, lr)

            optimizer.zero_grad()
            loss = net() # 论文中:Global optimization
            loss.backward()
            optimizer.step()
            loss = float(loss)
            bar.set_postfix_str(f'{lr=:g} loss={loss:g}')
            if bar.n % 30 == 0:
                print(' ')
            bar.update()