Spaces:
Sleeping
Sleeping
File size: 12,116 Bytes
633d2c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
# Copyright (C) 2022-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
# --------------------------------------------------------
# Main function for training one epoch or testing
# --------------------------------------------------------
import math
import sys
from typing import Iterable
import numpy as np
import torch
import torchvision
from utils import misc as misc
def split_prediction_conf(predictions, with_conf=False):
if not with_conf:
return predictions, None
conf = predictions[:,-1:,:,:]
predictions = predictions[:,:-1,:,:]
return predictions, conf
def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module, metrics: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler,
log_writer=None, print_freq = 20,
args=None):
model.train(True)
metric_logger = misc.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
accum_iter = args.accum_iter
optimizer.zero_grad()
details = {}
if log_writer is not None:
print('log_dir: {}'.format(log_writer.log_dir))
if args.img_per_epoch:
iter_per_epoch = args.img_per_epoch // args.batch_size + int(args.img_per_epoch % args.batch_size > 0)
assert len(data_loader) >= iter_per_epoch, 'Dataset is too small for so many iterations'
len_data_loader = iter_per_epoch
else:
len_data_loader, iter_per_epoch = len(data_loader), None
for data_iter_step, (image1, image2, gt, pairname) in enumerate(metric_logger.log_every(data_loader, print_freq, header, max_iter=iter_per_epoch)):
image1 = image1.to(device, non_blocking=True)
image2 = image2.to(device, non_blocking=True)
gt = gt.to(device, non_blocking=True)
# we use a per iteration (instead of per epoch) lr scheduler
if data_iter_step % accum_iter == 0:
misc.adjust_learning_rate(optimizer, data_iter_step / len_data_loader + epoch, args)
with torch.cuda.amp.autocast(enabled=bool(args.amp)):
prediction = model(image1, image2)
prediction, conf = split_prediction_conf(prediction, criterion.with_conf)
batch_metrics = metrics(prediction.detach(), gt)
loss = criterion(prediction, gt) if conf is None else criterion(prediction, gt, conf)
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
loss /= accum_iter
loss_scaler(loss, optimizer, parameters=model.parameters(),
update_grad=(data_iter_step + 1) % accum_iter == 0)
if (data_iter_step + 1) % accum_iter == 0:
optimizer.zero_grad()
torch.cuda.synchronize()
metric_logger.update(loss=loss_value)
for k,v in batch_metrics.items():
metric_logger.update(**{k: v.item()})
lr = optimizer.param_groups[0]["lr"]
metric_logger.update(lr=lr)
#if args.dsitributed: loss_value_reduce = misc.all_reduce_mean(loss_value)
time_to_log = ((data_iter_step + 1) % (args.tboard_log_step * accum_iter) == 0 or data_iter_step == len_data_loader-1)
loss_value_reduce = misc.all_reduce_mean(loss_value)
if log_writer is not None and time_to_log:
epoch_1000x = int((data_iter_step / len_data_loader + epoch) * 1000)
# We use epoch_1000x as the x-axis in tensorboard. This calibrates different curves when batch size changes.
log_writer.add_scalar('train/loss', loss_value_reduce, epoch_1000x)
log_writer.add_scalar('lr', lr, epoch_1000x)
for k,v in batch_metrics.items():
log_writer.add_scalar('train/'+k, v.item(), epoch_1000x)
# gather the stats from all processes
#if args.distributed: metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def validate_one_epoch(model: torch.nn.Module,
criterion: torch.nn.Module,
metrics: torch.nn.Module,
data_loaders: list[Iterable],
device: torch.device,
epoch: int,
log_writer=None,
args=None):
model.eval()
metric_loggers = []
header = 'Epoch: [{}]'.format(epoch)
print_freq = 20
conf_mode = args.tile_conf_mode
crop = args.crop
if log_writer is not None:
print('log_dir: {}'.format(log_writer.log_dir))
results = {}
dnames = []
image1, image2, gt, prediction = None, None, None, None
for didx, data_loader in enumerate(data_loaders):
dname = str(data_loader.dataset)
dnames.append(dname)
metric_loggers.append(misc.MetricLogger(delimiter=" "))
for data_iter_step, (image1, image2, gt, pairname) in enumerate(metric_loggers[didx].log_every(data_loader, print_freq, header)):
image1 = image1.to(device, non_blocking=True)
image2 = image2.to(device, non_blocking=True)
gt = gt.to(device, non_blocking=True)
if dname.startswith('Spring'):
assert gt.size(2)==image1.size(2)*2 and gt.size(3)==image1.size(3)*2
gt = (gt[:,:,0::2,0::2] + gt[:,:,0::2,1::2] + gt[:,:,1::2,0::2] + gt[:,:,1::2,1::2] ) / 4.0 # we approximate the gt based on the 2x upsampled ones
with torch.inference_mode():
prediction, tiled_loss, c = tiled_pred(model, criterion, image1, image2, gt, conf_mode=conf_mode, overlap=args.val_overlap, crop=crop, with_conf=criterion.with_conf)
batch_metrics = metrics(prediction.detach(), gt)
loss = criterion(prediction.detach(), gt) if not criterion.with_conf else criterion(prediction.detach(), gt, c)
loss_value = loss.item()
metric_loggers[didx].update(loss_tiled=tiled_loss.item())
metric_loggers[didx].update(**{f'loss': loss_value})
for k,v in batch_metrics.items():
metric_loggers[didx].update(**{dname+'_' + k: v.item()})
results = {k: meter.global_avg for ml in metric_loggers for k, meter in ml.meters.items()}
if len(dnames)>1:
for k in batch_metrics.keys():
results['AVG_'+k] = sum(results[dname+'_'+k] for dname in dnames) / len(dnames)
if log_writer is not None :
epoch_1000x = int((1 + epoch) * 1000)
for k,v in results.items():
log_writer.add_scalar('val/'+k, v, epoch_1000x)
print("Averaged stats:", results)
return results
import torch.nn.functional as F
def _resize_img(img, new_size):
return F.interpolate(img, size=new_size, mode='bicubic', align_corners=False)
def _resize_stereo_or_flow(data, new_size):
assert data.ndim==4
assert data.size(1) in [1,2]
scale_x = new_size[1]/float(data.size(3))
out = F.interpolate(data, size=new_size, mode='bicubic', align_corners=False)
out[:,0,:,:] *= scale_x
if out.size(1)==2:
scale_y = new_size[0]/float(data.size(2))
out[:,1,:,:] *= scale_y
print(scale_x, new_size, data.shape)
return out
@torch.no_grad()
def tiled_pred(model, criterion, img1, img2, gt,
overlap=0.5, bad_crop_thr=0.05,
downscale=False, crop=512, ret='loss',
conf_mode='conf_expsigmoid_10_5', with_conf=False,
return_time=False):
# for each image, we are going to run inference on many overlapping patches
# then, all predictions will be weighted-averaged
if gt is not None:
B, C, H, W = gt.shape
else:
B, _, H, W = img1.shape
C = model.head.num_channels-int(with_conf)
win_height, win_width = crop[0], crop[1]
# upscale to be larger than the crop
do_change_scale = H<win_height or W<win_width
if do_change_scale:
upscale_factor = max(win_width/W, win_height/W)
original_size = (H,W)
new_size = (round(H*upscale_factor),round(W*upscale_factor))
img1 = _resize_img(img1, new_size)
img2 = _resize_img(img2, new_size)
# resize gt just for the computation of tiled losses
if gt is not None: gt = _resize_stereo_or_flow(gt, new_size)
H,W = img1.shape[2:4]
if conf_mode.startswith('conf_expsigmoid_'): # conf_expsigmoid_30_10
beta, betasigmoid = map(float, conf_mode[len('conf_expsigmoid_'):].split('_'))
elif conf_mode.startswith('conf_expbeta'): # conf_expbeta3
beta = float(conf_mode[len('conf_expbeta'):])
else:
raise NotImplementedError(f"conf_mode {conf_mode} is not implemented")
def crop_generator():
for sy in _overlapping(H, win_height, overlap):
for sx in _overlapping(W, win_width, overlap):
yield sy, sx, sy, sx, True
# keep track of weighted sum of prediction*weights and weights
accu_pred = img1.new_zeros((B, C, H, W)) # accumulate the weighted sum of predictions
accu_conf = img1.new_zeros((B, H, W)) + 1e-16 # accumulate the weights
accu_c = img1.new_zeros((B, H, W)) # accumulate the weighted sum of confidences ; not so useful except for computing some losses
tiled_losses = []
if return_time:
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start.record()
for sy1, sx1, sy2, sx2, aligned in crop_generator():
# compute optical flow there
pred = model(_crop(img1,sy1,sx1), _crop(img2,sy2,sx2))
pred, predconf = split_prediction_conf(pred, with_conf=with_conf)
if gt is not None: gtcrop = _crop(gt,sy1,sx1)
if criterion is not None and gt is not None:
tiled_losses.append( criterion(pred, gtcrop).item() if predconf is None else criterion(pred, gtcrop, predconf).item() )
if conf_mode.startswith('conf_expsigmoid_'):
conf = torch.exp(- beta * 2 * (torch.sigmoid(predconf / betasigmoid) - 0.5)).view(B,win_height,win_width)
elif conf_mode.startswith('conf_expbeta'):
conf = torch.exp(- beta * predconf).view(B,win_height,win_width)
else:
raise NotImplementedError
accu_pred[...,sy1,sx1] += pred * conf[:,None,:,:]
accu_conf[...,sy1,sx1] += conf
accu_c[...,sy1,sx1] += predconf.view(B,win_height,win_width) * conf
pred = accu_pred / accu_conf[:, None,:,:]
c = accu_c / accu_conf
assert not torch.any(torch.isnan(pred))
if return_time:
end.record()
torch.cuda.synchronize()
time = start.elapsed_time(end)/1000.0 # this was in milliseconds
if do_change_scale:
pred = _resize_stereo_or_flow(pred, original_size)
if return_time:
return pred, torch.mean(torch.tensor(tiled_losses)), c, time
return pred, torch.mean(torch.tensor(tiled_losses)), c
def _overlapping(total, window, overlap=0.5):
assert total >= window and 0 <= overlap < 1, (total, window, overlap)
num_windows = 1 + int(np.ceil( (total - window) / ((1-overlap) * window) ))
offsets = np.linspace(0, total-window, num_windows).round().astype(int)
yield from (slice(x, x+window) for x in offsets)
def _crop(img, sy, sx):
B, THREE, H, W = img.shape
if 0 <= sy.start and sy.stop <= H and 0 <= sx.start and sx.stop <= W:
return img[:,:,sy,sx]
l, r = max(0,-sx.start), max(0,sx.stop-W)
t, b = max(0,-sy.start), max(0,sy.stop-H)
img = torch.nn.functional.pad(img, (l,r,t,b), mode='constant')
return img[:, :, slice(sy.start+t,sy.stop+t), slice(sx.start+l,sx.stop+l)] |