File size: 28,813 Bytes
00fc29f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
# from einops._torch_specific import allow_ops_in_compiled_graph
# allow_ops_in_compiled_graph()
import einops
import torch
import torch as th
import torch.nn as nn
from einops import rearrange, repeat

from sgm.modules.diffusionmodules.util import (
    avg_pool_nd,
    checkpoint,
    conv_nd,
    linear,
    normalization,
    timestep_embedding,
    zero_module,
)

from sgm.modules.diffusionmodules.openaimodel import Downsample, Upsample, UNetModel, Timestep, \
    TimestepEmbedSequential, ResBlock, AttentionBlock, TimestepBlock
from sgm.modules.attention import SpatialTransformer, MemoryEfficientCrossAttention, CrossAttention
from sgm.util import default, log_txt_as_img, exists, instantiate_from_config
import re
import torch
from functools import partial


try:
    import xformers
    import xformers.ops
    XFORMERS_IS_AVAILBLE = True
except:
    XFORMERS_IS_AVAILBLE = False


# 虚拟替代
def convert_module_to_f16(x):
    pass


def convert_module_to_f32(x):
    pass


class ZeroConv(nn.Module):
    def __init__(self, label_nc, norm_nc, mask=False):
        super().__init__()
        self.zero_conv = zero_module(conv_nd(2, label_nc, norm_nc, 1, 1, 0))
        self.mask = mask

    def forward(self, c, h, h_ori=None):
        # with torch.cuda.amp.autocast(enabled=False, dtype=torch.float32):
        if not self.mask:
            h = h + self.zero_conv(c)
        else:
            h = h + self.zero_conv(c) * torch.zeros_like(h)
        if h_ori is not None:
            h = th.cat([h_ori, h], dim=1)
        return h


class ZeroSFT(nn.Module):
    def __init__(self, label_nc, norm_nc, concat_channels=0, norm=True, mask=False):
        super().__init__()

        # param_free_norm_type = str(parsed.group(1))
        ks = 3
        pw = ks // 2

        self.norm = norm
        if self.norm:
            self.param_free_norm = normalization(norm_nc + concat_channels)
        else:
            self.param_free_norm = nn.Identity()

        nhidden = 128

        self.mlp_shared = nn.Sequential(
            nn.Conv2d(label_nc, nhidden, kernel_size=ks, padding=pw),
            nn.SiLU()
        )
        self.zero_mul = zero_module(nn.Conv2d(nhidden, norm_nc + concat_channels, kernel_size=ks, padding=pw))
        self.zero_add = zero_module(nn.Conv2d(nhidden, norm_nc + concat_channels, kernel_size=ks, padding=pw))
        # self.zero_mul = nn.Conv2d(nhidden, norm_nc + concat_channels, kernel_size=ks, padding=pw)
        # self.zero_add = nn.Conv2d(nhidden, norm_nc + concat_channels, kernel_size=ks, padding=pw)

        self.zero_conv = zero_module(conv_nd(2, label_nc, norm_nc, 1, 1, 0))
        self.pre_concat = bool(concat_channels != 0)
        self.mask = mask

    def forward(self, c, h, h_ori=None, control_scale=1):
        assert self.mask is False
        if h_ori is not None and self.pre_concat:
            h_raw = th.cat([h_ori, h], dim=1)
        else:
            h_raw = h

        if self.mask:
            h = h + self.zero_conv(c) * torch.zeros_like(h)
        else:
            h = h + self.zero_conv(c)
        if h_ori is not None and self.pre_concat:
            h = th.cat([h_ori, h], dim=1)
        actv = self.mlp_shared(c)
        gamma = self.zero_mul(actv)
        beta = self.zero_add(actv)
        if self.mask:
            gamma = gamma * torch.zeros_like(gamma)
            beta = beta * torch.zeros_like(beta)
        h = self.param_free_norm(h) * (gamma + 1) + beta
        if h_ori is not None and not self.pre_concat:
            h = th.cat([h_ori, h], dim=1)
        return h * control_scale + h_raw * (1 - control_scale)


class ZeroCrossAttn(nn.Module):
    ATTENTION_MODES = {
        "softmax": CrossAttention,  # 原始注意力
        "softmax-xformers": MemoryEfficientCrossAttention
    }

    def __init__(self, context_dim, query_dim, zero_out=True, mask=False):
        super().__init__()
        attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax"
        assert attn_mode in self.ATTENTION_MODES
        attn_cls = self.ATTENTION_MODES[attn_mode]
        self.attn = attn_cls(query_dim=query_dim, context_dim=context_dim, heads=query_dim//64, dim_head=64)
        self.norm1 = normalization(query_dim)
        self.norm2 = normalization(context_dim)

        self.mask = mask

        # if zero_out:
        #     # for p in self.attn.to_out.parameters():
        #     #     p.detach().zero_()
        #     self.attn.to_out = zero_module(self.attn.to_out)

    def forward(self, context, x, control_scale=1):
        assert self.mask is False
        x_in = x
        x = self.norm1(x)
        context = self.norm2(context)
        b, c, h, w = x.shape
        x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
        context = rearrange(context, 'b c h w -> b (h w) c').contiguous()
        x = self.attn(x, context)
        x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
        if self.mask:
            x = x * torch.zeros_like(x)
        x = x_in + x * control_scale

        return x


class GLVControl(nn.Module):
    def __init__(

        self,

        in_channels,

        model_channels,

        out_channels,

        num_res_blocks,

        attention_resolutions,

        dropout=0,

        channel_mult=(1, 2, 4, 8),

        conv_resample=True,

        dims=2,

        num_classes=None,

        use_checkpoint=False,

        use_fp16=False,

        num_heads=-1,

        num_head_channels=-1,

        num_heads_upsample=-1,

        use_scale_shift_norm=False,

        resblock_updown=False,

        use_new_attention_order=False,

        use_spatial_transformer=False,  # 自定义 transformer 支持

        transformer_depth=1,  # 自定义 transformer 支持

        context_dim=None,  # 自定义 transformer 支持

        n_embed=None,  # 自定义支持将离散 ID 预测到第一阶段 VQ 模型的编码本中

        legacy=True,

        disable_self_attentions=None,

        num_attention_blocks=None,

        disable_middle_self_attn=False,

        use_linear_in_transformer=False,

        spatial_transformer_attn_type="softmax",

        adm_in_channels=None,

        use_fairscale_checkpoint=False,

        offload_to_cpu=False,

        transformer_depth_middle=None,

        input_upscale=1,

    ):
        super().__init__()
        from omegaconf.listconfig import ListConfig

        if use_spatial_transformer:
            assert (
                context_dim is not None
            ), "傻瓜!你忘了把你的交叉注意力调节的尺寸包括在内..."

        if context_dim is not None:
            assert (
                use_spatial_transformer
            ), "傻瓜!你忘了使用 spatial transformer 进行交叉注意调节..."
            if type(context_dim) == ListConfig:
                context_dim = list(context_dim)

        if num_heads_upsample == -1:
            num_heads_upsample = num_heads

        if num_heads == -1:
            assert (
                num_head_channels != -1
            ), "必须设置头数(num_heads)或通道数(num_head_channels)。"

        if num_head_channels == -1:
            assert (
                num_heads != -1
            ), "必须设置头数(num_heads)或通道数(num_head_channels)。"

        self.in_channels = in_channels
        self.model_channels = model_channels
        self.out_channels = out_channels
        if isinstance(transformer_depth, int):
            transformer_depth = len(channel_mult) * [transformer_depth]
        elif isinstance(transformer_depth, ListConfig):
            transformer_depth = list(transformer_depth)
        transformer_depth_middle = default(
            transformer_depth_middle, transformer_depth[-1]
        )

        if isinstance(num_res_blocks, int):
            self.num_res_blocks = len(channel_mult) * [num_res_blocks]
        else:
            if len(num_res_blocks) != len(channel_mult):
                raise ValueError(
                    "将 num_res_blocks 作为 int(全局常量)或与 channel_mult 相同长度的列表/元组(按层)提供"
                )
            self.num_res_blocks = num_res_blocks
        # self.num_res_blocks = num_res_blocks
        if disable_self_attentions is not None:
            # 应为布尔值列表,表示是否在 TransformerBlocks 中禁用自注意功能
            assert len(disable_self_attentions) == len(channel_mult)
        if num_attention_blocks is not None:
            assert len(num_attention_blocks) == len(self.num_res_blocks)
            assert all(
                map(
                    lambda i: self.num_res_blocks[i] >= num_attention_blocks[i],
                    range(len(num_attention_blocks)),
                )
            )
            print(
                f"收到的 UNetModel 的构造函数 num_attention_blocks={num_attention_blocks}。"
                f"该选项的优先级低于 attention_resolutions {attention_resolutions},"
                f"也就是说,在 num_attention_blocks[i] > 0 但 2**i 不在 attention_resolutions 中的情况下,仍不会设置注意力。"
            )  # todo: 转为警告

        self.attention_resolutions = attention_resolutions
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
        self.num_classes = num_classes
        self.use_checkpoint = use_checkpoint
        if use_fp16:
            print("WARNING: use_fp16 已被丢弃,不再有任何影响。")
        # self.dtype = th.float16 if use_fp16 else th.float32
        self.num_heads = num_heads
        self.num_head_channels = num_head_channels
        self.num_heads_upsample = num_heads_upsample
        self.predict_codebook_ids = n_embed is not None

        assert use_fairscale_checkpoint != use_checkpoint or not (
            use_checkpoint or use_fairscale_checkpoint
        )

        self.use_fairscale_checkpoint = False
        checkpoint_wrapper_fn = (
            partial(checkpoint_wrapper, offload_to_cpu=offload_to_cpu)
            if self.use_fairscale_checkpoint
            else lambda x: x
        )

        time_embed_dim = model_channels * 4
        self.time_embed = checkpoint_wrapper_fn(
            nn.Sequential(
                linear(model_channels, time_embed_dim),
                nn.SiLU(),
                linear(time_embed_dim, time_embed_dim),
            )
        )

        if self.num_classes is not None:
            if isinstance(self.num_classes, int):
                self.label_emb = nn.Embedding(num_classes, time_embed_dim)
            elif self.num_classes == "continuous":
                print("设置线性 c_adm 嵌入层")
                self.label_emb = nn.Linear(1, time_embed_dim)
            elif self.num_classes == "timestep":
                self.label_emb = checkpoint_wrapper_fn(
                    nn.Sequential(
                        Timestep(model_channels),
                        nn.Sequential(
                            linear(model_channels, time_embed_dim),
                            nn.SiLU(),
                            linear(time_embed_dim, time_embed_dim),
                        ),
                    )
                )
            elif self.num_classes == "sequential":
                assert adm_in_channels is not None
                self.label_emb = nn.Sequential(
                    nn.Sequential(
                        linear(adm_in_channels, time_embed_dim),
                        nn.SiLU(),
                        linear(time_embed_dim, time_embed_dim),
                    )
                )
            else:
                raise ValueError()

        self.input_blocks = nn.ModuleList(
            [
                TimestepEmbedSequential(
                    conv_nd(dims, in_channels, model_channels, 3, padding=1)
                )
            ]
        )
        self._feature_size = model_channels
        input_block_chans = [model_channels]
        ch = model_channels
        ds = 1
        for level, mult in enumerate(channel_mult):
            for nr in range(self.num_res_blocks[level]):
                layers = [
                    checkpoint_wrapper_fn(
                        ResBlock(
                            ch,
                            time_embed_dim,
                            dropout,
                            out_channels=mult * model_channels,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                        )
                    )
                ]
                ch = mult * model_channels
                if ds in attention_resolutions:
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels
                    if legacy:
                        # num_heads = 1
                        dim_head = (
                            ch // num_heads
                            if use_spatial_transformer
                            else num_head_channels
                        )
                    if exists(disable_self_attentions):
                        disabled_sa = disable_self_attentions[level]
                    else:
                        disabled_sa = False

                    if (
                        not exists(num_attention_blocks)
                        or nr < num_attention_blocks[level]
                    ):
                        layers.append(
                            checkpoint_wrapper_fn(
                                AttentionBlock(
                                    ch,
                                    use_checkpoint=use_checkpoint,
                                    num_heads=num_heads,
                                    num_head_channels=dim_head,
                                    use_new_attention_order=use_new_attention_order,
                                )
                            )
                            if not use_spatial_transformer
                            else checkpoint_wrapper_fn(
                                SpatialTransformer(
                                    ch,
                                    num_heads,
                                    dim_head,
                                    depth=transformer_depth[level],
                                    context_dim=context_dim,
                                    disable_self_attn=disabled_sa,
                                    use_linear=use_linear_in_transformer,
                                    attn_type=spatial_transformer_attn_type,
                                    use_checkpoint=use_checkpoint,
                                )
                            )
                        )
                self.input_blocks.append(TimestepEmbedSequential(*layers))
                self._feature_size += ch
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
                        checkpoint_wrapper_fn(
                            ResBlock(
                                ch,
                                time_embed_dim,
                                dropout,
                                out_channels=out_ch,
                                dims=dims,
                                use_checkpoint=use_checkpoint,
                                use_scale_shift_norm=use_scale_shift_norm,
                                down=True,
                            )
                        )
                        if resblock_updown
                        else Downsample(
                            ch, conv_resample, dims=dims, out_channels=out_ch
                        )
                    )
                )
                ch = out_ch
                input_block_chans.append(ch)
                ds *= 2
                self._feature_size += ch

        if num_head_channels == -1:
            dim_head = ch // num_heads
        else:
            num_heads = ch // num_head_channels
            dim_head = num_head_channels
        if legacy:
            # num_heads = 1
            dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
        self.middle_block = TimestepEmbedSequential(
            checkpoint_wrapper_fn(
                ResBlock(
                    ch,
                    time_embed_dim,
                    dropout,
                    dims=dims,
                    use_checkpoint=use_checkpoint,
                    use_scale_shift_norm=use_scale_shift_norm,
                )
            ),
            checkpoint_wrapper_fn(
                AttentionBlock(
                    ch,
                    use_checkpoint=use_checkpoint,
                    num_heads=num_heads,
                    num_head_channels=dim_head,
                    use_new_attention_order=use_new_attention_order,
                )
            )
            if not use_spatial_transformer
            else checkpoint_wrapper_fn(
                SpatialTransformer(  # 总是使用自带的
                    ch,
                    num_heads,
                    dim_head,
                    depth=transformer_depth_middle,
                    context_dim=context_dim,
                    disable_self_attn=disable_middle_self_attn,
                    use_linear=use_linear_in_transformer,
                    attn_type=spatial_transformer_attn_type,
                    use_checkpoint=use_checkpoint,
                )
            ),
            checkpoint_wrapper_fn(
                ResBlock(
                    ch,
                    time_embed_dim,
                    dropout,
                    dims=dims,
                    use_checkpoint=use_checkpoint,
                    use_scale_shift_norm=use_scale_shift_norm,
                )
            ),
        )

        self.input_upscale = input_upscale
        self.input_hint_block = TimestepEmbedSequential(
                    zero_module(conv_nd(dims, in_channels, model_channels, 3, padding=1))
                )

    def convert_to_fp16(self):
        """

        Convert the torso of the model to float16.

        """
        self.input_blocks.apply(convert_module_to_f16)
        self.middle_block.apply(convert_module_to_f16)

    def convert_to_fp32(self):
        """

        Convert the torso of the model to float32.

        """
        self.input_blocks.apply(convert_module_to_f32)
        self.middle_block.apply(convert_module_to_f32)

    def forward(self, x, timesteps, xt, context=None, y=None, **kwargs):
        # with torch.cuda.amp.autocast(enabled=False, dtype=torch.float32):
        #     x = x.to(torch.float32)
        #     timesteps = timesteps.to(torch.float32)
        #     xt = xt.to(torch.float32)
        #     context = context.to(torch.float32)
        #     y = y.to(torch.float32)
        # print(x.dtype)
        xt, context, y = xt.to(x.dtype), context.to(x.dtype), y.to(x.dtype)

        if self.input_upscale != 1:
            x = nn.functional.interpolate(x, scale_factor=self.input_upscale, mode='bilinear', antialias=True)
        assert (y is not None) == (
            self.num_classes is not None
        ), "must specify y if and only if the model is class-conditional"
        hs = []
        t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
        # import pdb
        # pdb.set_trace()
        emb = self.time_embed(t_emb)

        if self.num_classes is not None:
            assert y.shape[0] == xt.shape[0]
            emb = emb + self.label_emb(y)

        guided_hint = self.input_hint_block(x, emb, context)

        # h = x.type(self.dtype)
        h = xt
        for module in self.input_blocks:
            if guided_hint is not None:
                h = module(h, emb, context)
                h += guided_hint
                guided_hint = None
            else:
                h = module(h, emb, context)
            hs.append(h)
            # print(module)
            # print(h.shape)
        h = self.middle_block(h, emb, context)
        hs.append(h)
        return hs


class LightGLVUNet(UNetModel):
    def __init__(self, mode='', project_type='ZeroSFT', project_channel_scale=1,

                 *args, **kwargs):
        super().__init__(*args, **kwargs)
        if mode == 'XL-base':
            cond_output_channels = [320] * 4 + [640] * 3 + [1280] * 3
            project_channels = [160] * 4 + [320] * 3 + [640] * 3
            concat_channels = [320] * 2 + [640] * 3 + [1280] * 4 + [0]
            cross_attn_insert_idx = [6, 3]
            self.progressive_mask_nums = [0, 3, 7, 11]
        elif mode == 'XL-refine':
            cond_output_channels = [384] * 4 + [768] * 3 + [1536] * 6
            project_channels = [192] * 4 + [384] * 3 + [768] * 6
            concat_channels = [384] * 2 + [768] * 3 + [1536] * 7 + [0]
            cross_attn_insert_idx = [9, 6, 3]
            self.progressive_mask_nums = [0, 3, 6, 10, 14]
        else:
            raise NotImplementedError

        project_channels = [int(c * project_channel_scale) for c in project_channels]

        self.project_modules = nn.ModuleList()
        for i in range(len(cond_output_channels)):
            # if i == len(cond_output_channels) - 1:
            #     _project_type = 'ZeroCrossAttn'
            # else:
            #     _project_type = project_type
            _project_type = project_type
            if _project_type == 'ZeroSFT':
                self.project_modules.append(ZeroSFT(project_channels[i], cond_output_channels[i],
                                                    concat_channels=concat_channels[i]))
            elif _project_type == 'ZeroCrossAttn':
                self.project_modules.append(ZeroCrossAttn(cond_output_channels[i], project_channels[i]))
            else:
                raise NotImplementedError

        for i in cross_attn_insert_idx:
            self.project_modules.insert(i, ZeroCrossAttn(cond_output_channels[i], concat_channels[i]))
            # print(self.project_modules[i])

    def step_progressive_mask(self):
        if len(self.progressive_mask_nums) > 0:
            mask_num = self.progressive_mask_nums.pop()
            for i in range(len(self.project_modules)):
                if i < mask_num:
                    self.project_modules[i].mask = True
                else:
                    self.project_modules[i].mask = False
            return
            # print(f'step_progressive_mask, current masked layers: {mask_num}')
        else:
            return
            # print('step_progressive_mask, no more masked layers')
        # for i in range(len(self.project_modules)):
        #     print(self.project_modules[i].mask)


    def forward(self, x, timesteps=None, context=None, y=None, control=None, control_scale=1, **kwargs):
        """

        将模型应用于输入批次。

        :param x: an [N x C x ...] 输入张量

        :param timesteps: 一个 1-D 时间步批次

        :param context: 通过 crossattn 接入的调节

        :param y: an [N] 标签张量,如果以类别为条件

        :return: an [N x C x ...] 输出张量

        """
        assert (y is not None) == (
            self.num_classes is not None
        ), "当且仅当模型是类条件模型时,必须指定 y"
        hs = []

        _dtype = control[0].dtype
        x, context, y = x.to(_dtype), context.to(_dtype), y.to(_dtype)

        with torch.no_grad():
            t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
            emb = self.time_embed(t_emb)

            if self.num_classes is not None:
                assert y.shape[0] == x.shape[0]
                emb = emb + self.label_emb(y)

            # h = x.type(self.dtype)
            h = x
            for module in self.input_blocks:
                h = module(h, emb, context)
                hs.append(h)

        adapter_idx = len(self.project_modules) - 1
        control_idx = len(control) - 1
        h = self.middle_block(h, emb, context)
        h = self.project_modules[adapter_idx](control[control_idx], h, control_scale=control_scale)
        adapter_idx -= 1
        control_idx -= 1

        for i, module in enumerate(self.output_blocks):
            _h = hs.pop()
            h = self.project_modules[adapter_idx](control[control_idx], _h, h, control_scale=control_scale)
            adapter_idx -= 1
            # h = th.cat([h, _h], dim=1)
            if len(module) == 3:
                assert isinstance(module[2], Upsample)
                for layer in module[:2]:
                    if isinstance(layer, TimestepBlock):
                        h = layer(h, emb)
                    elif isinstance(layer, SpatialTransformer):
                        h = layer(h, context)
                    else:
                        h = layer(h)
                # print('cross_attn_here')
                h = self.project_modules[adapter_idx](control[control_idx], h, control_scale=control_scale)
                adapter_idx -= 1
                h = module[2](h)
            else:
                h = module(h, emb, context)
            control_idx -= 1
            # print(module)
            # print(h.shape)

        h = h.type(x.dtype)
        if self.predict_codebook_ids:
            assert False, "不再支持了,你**的在干什么?"
        else:
            return self.out(h)

if __name__ == '__main__':
    from omegaconf import OmegaConf

    # refiner
    # opt = OmegaConf.load('../../options/train/debug_p2_xl.yaml')
    #
    # model = instantiate_from_config(opt.model.params.control_stage_config)
    # hint = model(torch.randn([1, 4, 64, 64]), torch.randn([1]), torch.randn([1, 4, 64, 64]))
    # hint = [h.cuda() for h in hint]
    # print(sum(map(lambda hint: hint.numel(), model.parameters())))
    #
    # unet = instantiate_from_config(opt.model.params.network_config)
    # unet = unet.cuda()
    #
    # _output = unet(torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1]).cuda(), torch.randn([1, 77, 1280]).cuda(),
    #                torch.randn([1, 2560]).cuda(), hint)
    # print(sum(map(lambda _output: _output.numel(), unet.parameters())))

    # 基层
    with torch.no_grad():
        opt = OmegaConf.load('../../options/dev/BOOXEL_tmp.yaml')

        model = instantiate_from_config(opt.model.params.control_stage_config)
        model = model.cuda()

        hint = model(torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1]).cuda(), torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1, 77, 2048]).cuda(),
                       torch.randn([1, 2816]).cuda())

        for h in hint:
            print(h.shape)
        #
        unet = instantiate_from_config(opt.model.params.network_config)
        unet = unet.cuda()
        _output = unet(torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1]).cuda(), torch.randn([1, 77, 2048]).cuda(),
                       torch.randn([1, 2816]).cuda(), hint)


        # model = instantiate_from_config(opt.model.params.control_stage_config)
        # model = model.cuda()
        # # hint = model(torch.randn([1, 4, 64, 64]), torch.randn([1]), torch.randn([1, 4, 64, 64]))
        # hint = model(torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1]).cuda(), torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1, 77, 1280]).cuda(),
        #                torch.randn([1, 2560]).cuda())
        # # hint = [h.cuda() for h in hint]
        #
        # for h in hint:
        #     print(h.shape)
        #
        # unet = instantiate_from_config(opt.model.params.network_config)
        # unet = unet.cuda()
        # _output = unet(torch.randn([1, 4, 64, 64]).cuda(), torch.randn([1]).cuda(), torch.randn([1, 77, 1280]).cuda(),
        #                torch.randn([1, 2560]).cuda(), hint)