File size: 3,166 Bytes
3c495cc
 
 
 
 
9e789e7
3c495cc
2a0aa5a
17b1403
3c495cc
17b1403
3c495cc
 
17b1403
9e789e7
2a0aa5a
 
3c495cc
9e789e7
 
 
 
3c495cc
3230abf
 
 
 
 
 
 
 
 
 
17b1403
 
 
 
 
 
 
 
 
 
 
3230abf
17b1403
 
 
3c495cc
 
 
 
 
e4bf3a0
43c8549
 
3c495cc
43c8549
 
3c495cc
43c8549
 
3c495cc
 
43c8549
 
3c495cc
 
 
 
 
 
 
2a0aa5a
25a095e
3c495cc
43c8549
3c495cc
 
a4e8fcb
3230abf
2a0aa5a
3c495cc
9e789e7
 
 
 
 
 
 
 
3c495cc
2a0aa5a
 
25a095e
 
 
2a0aa5a
 
3a85228
2a0aa5a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
"""
This module contains functions for generating responses using LLMs.
"""

import enum
import logging
from random import sample
from typing import List
from uuid import uuid4

from firebase_admin import firestore
import gradio as gr

from leaderboard import db
from model import ContextWindowExceededError
from model import Model
from model import supported_models

logging.basicConfig()
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)


def get_history_collection(category: str):
  if category == Category.SUMMARIZE.value:
    return db.collection("arena-summarization-history")

  if category == Category.TRANSLATE.value:
    return db.collection("arena-translation-history")


def create_history(category: str, model_name: str, instruction: str,
                   prompt: str, response: str):
  doc_id = uuid4().hex

  doc = {
      "id": doc_id,
      "model": model_name,
      "instruction": instruction,
      "prompt": prompt,
      "response": response,
      "timestamp": firestore.SERVER_TIMESTAMP
  }

  doc_ref = get_history_collection(category).document(doc_id)
  doc_ref.set(doc)


class Category(enum.Enum):
  SUMMARIZE = "Summarize"
  TRANSLATE = "Translate"


# TODO(#31): Let the model builders set the instruction.
def get_instruction(category: str, model: Model, source_lang: str,
                    target_lang: str):
  if category == Category.SUMMARIZE.value:
    return model.summarize_instruction

  if category == Category.TRANSLATE.value:
    return model.translate_instruction.format(source_lang=source_lang,
                                              target_lang=target_lang)


def get_responses(prompt: str, category: str, source_lang: str,
                  target_lang: str):
  if not category:
    raise gr.Error("Please select a category.")

  if category == Category.TRANSLATE.value and (not source_lang or
                                               not target_lang):
    raise gr.Error("Please select source and target languages.")

  models: List[Model] = sample(list(supported_models), 2)
  responses = []
  for model in models:
    instruction = get_instruction(category, model, source_lang, target_lang)
    try:
      # TODO(#1): Allow user to set configuration.
      response = model.completion(instruction, prompt)
      create_history(category, model.name, instruction, prompt, response)
      responses.append(response)

    except ContextWindowExceededError as e:
      logger.exception("Context window exceeded for model %s.", model.name)
      raise gr.Error(
          "The prompt is too long. Please try again with a shorter prompt."
      ) from e
    except Exception as e:
      logger.exception("Failed to get response from model %s.", model.name)
      raise gr.Error("Failed to get response. Please try again.") from e

  model_names = [model.name for model in models]

  # It simulates concurrent stream response generation.
  max_response_length = max(len(response) for response in responses)
  for i in range(max_response_length):
    yield [response[:i + 1] for response in responses
          ] + model_names + [instruction]

  yield responses + model_names + [instruction]