File size: 9,752 Bytes
b50f552
0556cb5
b50f552
 
0556cb5
b50f552
 
 
 
0556cb5
b50f552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99c90b0
df86cb4
99c90b0
df86cb4
 
b50f552
 
 
 
df86cb4
 
b50f552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df86cb4
551ddca
 
 
 
 
 
 
 
 
 
 
 
 
b50f552
df86cb4
 
b50f552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df86cb4
 
551ddca
 
 
 
df86cb4
 
 
b50f552
df86cb4
b50f552
df86cb4
 
 
 
b50f552
df86cb4
b50f552
df86cb4
b50f552
 
 
 
 
 
 
 
 
 
dff5a51
 
 
 
 
 
df86cb4
 
 
b50f552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df86cb4
 
b50f552
 
 
 
 
 
 
 
 
 
 
0556cb5
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
from __future__ import annotations
import os
import random
import uuid
import gradio as gr
import spaces
import numpy as np
import uuid
from diffusers import PixArtAlphaPipeline, LCMScheduler
import torch
from typing import Tuple
from datetime import datetime


DESCRIPTION = """ # Instant Image
        ### Super fast text to Image Generator.
        ### <span style='color: red;'>You may change the steps from 4 to 8, if you didn't get satisfied results.
        ### First Image processing takes time then images generate faster.
        """
if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"

MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "3000"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
PORT = int(os.getenv("DEMO_PORT", "15432"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")


style_list = [
    {
        "name": "(No style)",
        "prompt": "{prompt}",
        "negative_prompt": "",
    },
    {
        "name": "Cinematic",
        "prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
        "negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
    },
    {
        "name": "Realistic",
        "prompt": "Photorealistic {prompt} . Ulta-realistic, professional, 4k, highly detailed",
        "negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, disfigured",
    },
    {
        "name": "Anime",
        "prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime,  highly detailed",
        "negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
    },
    {
        "name": "Digital Art",
        "prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
        "negative_prompt": "photo, photorealistic, realism, ugly",
    },
    {
        "name": "Pixel art",
        "prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
        "negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
    },
    {
        "name": "Fantasy art",
        "prompt": "ethereal fantasy concept art of  {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
        "negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
    },
    {
        "name": "3D Model",
        "prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
        "negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
    },
]


styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "(No style)"
NUM_IMAGES_PER_PROMPT = 1

def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
    p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    if not negative:
        negative = ""
    return p.replace("{prompt}", positive), n + negative

if torch.cuda.is_available():

    pipe = PixArtAlphaPipeline.from_pretrained(
        "PixArt-alpha/PixArt-LCM-XL-2-1024-MS",
        torch_dtype=torch.float16,
        use_safetensors=True,
    )

    if os.getenv('CONSISTENCY_DECODER', False):
        print("Using DALL-E 3 Consistency Decoder")
        pipe.vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=torch.float16)

    if ENABLE_CPU_OFFLOAD:
        pipe.enable_model_cpu_offload()
    else:
        pipe.to(device)
        print("Loaded on Device!")
        
    # speed-up T5
    pipe.text_encoder.to_bettertransformer()

    if USE_TORCH_COMPILE:
        pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=True)
        print("Model Compiled!")






def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name



def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

@spaces.GPU(duration=30)
def generate(
        prompt: str,
        negative_prompt: str = "",
        style: str = DEFAULT_STYLE_NAME,
        use_negative_prompt: bool = False,
        seed: int = 0,
        width: int = 1024,
        height: int = 1024,
        inference_steps: int = 4,
        randomize_seed: bool = False,
        use_resolution_binning: bool = True,
        progress=gr.Progress(track_tqdm=True),
):
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator().manual_seed(seed)
    
    if not use_negative_prompt:
        negative_prompt = None  # type: ignore
    prompt, negative_prompt = apply_style(style, prompt, negative_prompt)

    images = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        width=width,
        height=height,
        guidance_scale=0,
        num_inference_steps=inference_steps,
        generator=generator,
        num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
        use_resolution_binning=use_resolution_binning,
        output_type="pil",
    ).images

    image_paths = [save_image(img) for img in images]
    print(image_paths)
    return image_paths, seed


examples = [
    "A Monkey with a happy face in the Sahara desert.",
    "Eiffel Tower was Made up of ICE.",
    "Color photo of a corgi made of transparent glass, standing on the riverside in Yosemite National Park.",
    "A close-up photo of a woman. She wore a blue coat with a gray dress underneath and has blue eyes.",
    "A litter of golden retriever puppies playing in the snow. Their heads pop out of the snow, covered in.",
    "an astronaut sitting in a diner, eating fries, cinematic, analog film",
]

 with gr.Row(equal_height=False):
        with gr.Group():
            with gr.Row():
                prompt = gr.Text(
                    label="Prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter your prompt",
                    container=False,
                )
                run_button = gr.Button("Run", scale=0)
            result = gr.Gallery(label="Result", columns=NUM_IMAGES_PER_PROMPT,  show_label=False)
                    
    with gr.Accordion("Advanced options", open=False):
        with gr.Group():
            with gr.Row():
                use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False, visible=True)
                negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=True,
            )
              
#                num_imgs = gr.Slider(
 #                   label="Num Images",
  #                  minimum=1,
   #                 maximum=8,
    #                step=1,
     #               value=1,
      #          )
            style_selection = gr.Radio(
                show_label=True,
                container=True,
                interactive=True,
                choices=STYLE_NAMES,
                value=DEFAULT_STYLE_NAME,
                label="Image Style",
            )
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
                )
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
        with gr.Row():
            inference_steps = gr.Slider(
                label="Steps",
                minimum=4,
                maximum=20,
                step=1,
                value=4,
            )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=[result, seed],
        fn=generate,
        cache_examples=CACHE_EXAMPLES,
    )




















    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        api_name=False,
    )

    gr.on(
        triggers=[
            prompt.submit,
            negative_prompt.submit,
            run_button.click,
        ],
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            style_selection,
            use_negative_prompt,
            # num_imgs,
            seed,
            width,
            height,
            inference_steps,
            randomize_seed,
        ],
        outputs=[result, seed],
        api_name="run",
    )

if __name__ == "__main__":
    demo.queue(max_size=20).launch()
    # demo.queue(max_size=20).launch(server_name="0.0.0.0", server_port=11900, debug=True)