File size: 6,733 Bytes
9842c28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import cv2
import numpy as np
from PIL import Image
import glob
import os
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.utils.download_util import load_file_from_url

from realesrgan import RealESRGANer
from realesrgan.archs.srvgg_arch import SRVGGNetCompact


def realEsrgan(
    model_name="RealESRGAN_x4plus_anime_6B",
    model_path=None,
    input_dir="inputs",
    output_dir="results",
    denoise_strength=0.5,
    outscale=4,
    suffix="out",
    tile=200,
    tile_pad=10,
    pre_pad=0,
    face_enhance=True,
    alpha_upsampler="realsrgan",
    out_ext="auto",
    fp32=True,
    gpu_id=None,
):

    # determine models according to model names
    model_name = model_name.split(".")[0]
    if model_name == "RealESRGAN_x4plus":  # x4 RRDBNet model
        model = RRDBNet(
            num_in_ch=3,
            num_out_ch=3,
            num_feat=64,
            num_block=23,
            num_grow_ch=32,
            scale=4,
        )
        netscale = 4
        file_url = [
            "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth"
        ]
    elif model_name == "RealESRNet_x4plus":  # x4 RRDBNet model
        model = RRDBNet(
            num_in_ch=3,
            num_out_ch=3,
            num_feat=64,
            num_block=23,
            num_grow_ch=32,
            scale=4,
        )
        netscale = 4
        file_url = [
            "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth"
        ]
    elif model_name == "RealESRGAN_x4plus_anime_6B":  # x4 RRDBNet model with 6 blocks
        model = RRDBNet(
            num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4
        )
        netscale = 4
        file_url = [
            "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth"
        ]
    elif model_name == "RealESRGAN_x2plus":  # x2 RRDBNet model
        model = RRDBNet(
            num_in_ch=3,
            num_out_ch=3,
            num_feat=64,
            num_block=23,
            num_grow_ch=32,
            scale=2,
        )
        netscale = 2
        file_url = [
            "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth"
        ]
    elif model_name == "realesr-animevideov3":  # x4 VGG-style model (XS size)
        model = SRVGGNetCompact(
            num_in_ch=3,
            num_out_ch=3,
            num_feat=64,
            num_conv=16,
            upscale=4,
            act_type="prelu",
        )
        netscale = 4
        file_url = [
            "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth"
        ]
    elif model_name == "realesr-general-x4v3":  # x4 VGG-style model (S size)
        model = SRVGGNetCompact(
            num_in_ch=3,
            num_out_ch=3,
            num_feat=64,
            num_conv=32,
            upscale=4,
            act_type="prelu",
        )
        netscale = 4
        file_url = [
            "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth",
            "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth",
        ]

    # determine model paths
    if model_path is None:
        model_path = os.path.join("weights", model_name + ".pth")
        if not os.path.isfile(model_path):
            ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
            for url in file_url:
                # model_path will be updated
                model_path = load_file_from_url(
                    url=url,
                    model_dir=os.path.join(ROOT_DIR, "weights"),
                    progress=True,
                    file_name=None,
                )

    # use dni to control the denoise strength
    dni_weight = None
    if model_name == "realesr-general-x4v3" and denoise_strength != 1:
        wdn_model_path = model_path.replace(
            "realesr-general-x4v3", "realesr-general-wdn-x4v3"
        )
        model_path = [model_path, wdn_model_path]
        dni_weight = [denoise_strength, 1 - denoise_strength]

    # restorer
    upsampler = RealESRGANer(
        scale=netscale,
        model_path=model_path,
        dni_weight=dni_weight,
        model=model,
        tile=tile,
        tile_pad=tile_pad,
        pre_pad=pre_pad,
        half=not fp32,
        gpu_id=gpu_id,
    )

    if face_enhance:  # Use GFPGAN for face enhancement
        from gfpgan import GFPGANer

        face_enhancer = GFPGANer(
            model_path="https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth",
            upscale=outscale,
            arch="clean",
            channel_multiplier=2,
            bg_upsampler=upsampler,
        )
    os.makedirs(output_dir, exist_ok=True)

    if not isinstance(input_dir, list):
        paths = [input_dir]
    else:
        paths = sorted(glob.glob(os.path.join(input_dir, "*")))

    Imgs = []
    for idx, path in enumerate(paths):
        print(f"Scaling x{outscale}:", path)
        if isinstance(path, Image.Image):
            img = path
            img = cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)
            imgname = f"img_{idx}"
        else:
            imgname, extension = os.path.splitext(os.path.basename(path))
            img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
        if len(img.shape) == 3 and img.shape[2] == 4:
            img_mode = "RGBA"
        else:
            img_mode = None

        try:
            if face_enhance:
                _, _, output = face_enhancer.enhance(
                    img, has_aligned=False, only_center_face=False, paste_back=True
                )
            else:
                output, _ = upsampler.enhance(img, outscale=outscale)
        except RuntimeError as error:
            print("Error", error)
            print(
                "If you encounter CUDA or RAM out of memory, try to set --tile with a smaller number."
            )
        else:
            # if out_ext == "auto":
            #     extension = extension[1:]
            # else:
            #     extension = out_ext
            # if img_mode == "RGBA":  # RGBA images should be saved in png format
            #     extension = "png"
            # if suffix == "":
            #     save_path = os.path.join(output_dir, f"{imgname}.{extension}")
            # else:
            #     save_path = os.path.join(output_dir, f"{imgname}_{suffix}.{extension}")
            #
            # cv2.imwrite(save_path, output)

            img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
            img = Image.fromarray(img)
            Imgs.append(img)

    return Imgs