File size: 6,733 Bytes
9842c28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import cv2
import numpy as np
from PIL import Image
import glob
import os
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.utils.download_util import load_file_from_url
from realesrgan import RealESRGANer
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
def realEsrgan(
model_name="RealESRGAN_x4plus_anime_6B",
model_path=None,
input_dir="inputs",
output_dir="results",
denoise_strength=0.5,
outscale=4,
suffix="out",
tile=200,
tile_pad=10,
pre_pad=0,
face_enhance=True,
alpha_upsampler="realsrgan",
out_ext="auto",
fp32=True,
gpu_id=None,
):
# determine models according to model names
model_name = model_name.split(".")[0]
if model_name == "RealESRGAN_x4plus": # x4 RRDBNet model
model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=23,
num_grow_ch=32,
scale=4,
)
netscale = 4
file_url = [
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth"
]
elif model_name == "RealESRNet_x4plus": # x4 RRDBNet model
model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=23,
num_grow_ch=32,
scale=4,
)
netscale = 4
file_url = [
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth"
]
elif model_name == "RealESRGAN_x4plus_anime_6B": # x4 RRDBNet model with 6 blocks
model = RRDBNet(
num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4
)
netscale = 4
file_url = [
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth"
]
elif model_name == "RealESRGAN_x2plus": # x2 RRDBNet model
model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=23,
num_grow_ch=32,
scale=2,
)
netscale = 2
file_url = [
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth"
]
elif model_name == "realesr-animevideov3": # x4 VGG-style model (XS size)
model = SRVGGNetCompact(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_conv=16,
upscale=4,
act_type="prelu",
)
netscale = 4
file_url = [
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth"
]
elif model_name == "realesr-general-x4v3": # x4 VGG-style model (S size)
model = SRVGGNetCompact(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_conv=32,
upscale=4,
act_type="prelu",
)
netscale = 4
file_url = [
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth",
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth",
]
# determine model paths
if model_path is None:
model_path = os.path.join("weights", model_name + ".pth")
if not os.path.isfile(model_path):
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
for url in file_url:
# model_path will be updated
model_path = load_file_from_url(
url=url,
model_dir=os.path.join(ROOT_DIR, "weights"),
progress=True,
file_name=None,
)
# use dni to control the denoise strength
dni_weight = None
if model_name == "realesr-general-x4v3" and denoise_strength != 1:
wdn_model_path = model_path.replace(
"realesr-general-x4v3", "realesr-general-wdn-x4v3"
)
model_path = [model_path, wdn_model_path]
dni_weight = [denoise_strength, 1 - denoise_strength]
# restorer
upsampler = RealESRGANer(
scale=netscale,
model_path=model_path,
dni_weight=dni_weight,
model=model,
tile=tile,
tile_pad=tile_pad,
pre_pad=pre_pad,
half=not fp32,
gpu_id=gpu_id,
)
if face_enhance: # Use GFPGAN for face enhancement
from gfpgan import GFPGANer
face_enhancer = GFPGANer(
model_path="https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth",
upscale=outscale,
arch="clean",
channel_multiplier=2,
bg_upsampler=upsampler,
)
os.makedirs(output_dir, exist_ok=True)
if not isinstance(input_dir, list):
paths = [input_dir]
else:
paths = sorted(glob.glob(os.path.join(input_dir, "*")))
Imgs = []
for idx, path in enumerate(paths):
print(f"Scaling x{outscale}:", path)
if isinstance(path, Image.Image):
img = path
img = cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)
imgname = f"img_{idx}"
else:
imgname, extension = os.path.splitext(os.path.basename(path))
img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
if len(img.shape) == 3 and img.shape[2] == 4:
img_mode = "RGBA"
else:
img_mode = None
try:
if face_enhance:
_, _, output = face_enhancer.enhance(
img, has_aligned=False, only_center_face=False, paste_back=True
)
else:
output, _ = upsampler.enhance(img, outscale=outscale)
except RuntimeError as error:
print("Error", error)
print(
"If you encounter CUDA or RAM out of memory, try to set --tile with a smaller number."
)
else:
# if out_ext == "auto":
# extension = extension[1:]
# else:
# extension = out_ext
# if img_mode == "RGBA": # RGBA images should be saved in png format
# extension = "png"
# if suffix == "":
# save_path = os.path.join(output_dir, f"{imgname}.{extension}")
# else:
# save_path = os.path.join(output_dir, f"{imgname}_{suffix}.{extension}")
#
# cv2.imwrite(save_path, output)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = Image.fromarray(img)
Imgs.append(img)
return Imgs
|