File size: 8,845 Bytes
9842c28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import argparse
import cv2
import glob
import os
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.utils.download_util import load_file_from_url

from realesrgan import RealESRGANer
from realesrgan.archs.srvgg_arch import SRVGGNetCompact


def main():
    """Inference demo for Real-ESRGAN."""
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-i", "--input", type=str, default="inputs", help="Input image or folder"
    )
    parser.add_argument(
        "-n",
        "--model_name",
        type=str,
        default="RealESRGAN_x4plus",
        help=(
            "Model names: RealESRGAN_x4plus | RealESRNet_x4plus | RealESRGAN_x4plus_anime_6B | RealESRGAN_x2plus | "
            "realesr-animevideov3 | realesr-general-x4v3"
        ),
    )
    parser.add_argument(
        "-o", "--output", type=str, default="results", help="Output folder"
    )
    parser.add_argument(
        "-dn",
        "--denoise_strength",
        type=float,
        default=0.5,
        help=(
            "Denoise strength. 0 for weak denoise (keep noise), 1 for strong denoise ability. "
            "Only used for the realesr-general-x4v3 model"
        ),
    )
    parser.add_argument(
        "-s",
        "--outscale",
        type=float,
        default=4,
        help="The final upsampling scale of the image",
    )
    parser.add_argument(
        "--model_path",
        type=str,
        default=None,
        help="[Option] Model path. Usually, you do not need to specify it",
    )
    parser.add_argument(
        "--suffix", type=str, default="out", help="Suffix of the restored image"
    )
    parser.add_argument(
        "-t",
        "--tile",
        type=int,
        default=0,
        help="Tile size, 0 for no tile during testing",
    )
    parser.add_argument("--tile_pad", type=int, default=10, help="Tile padding")
    parser.add_argument(
        "--pre_pad", type=int, default=0, help="Pre padding size at each border"
    )
    parser.add_argument(
        "--face_enhance", action="store_true", help="Use GFPGAN to enhance face"
    )
    parser.add_argument(
        "--fp32",
        action="store_true",
        help="Use fp32 precision during inference. Default: fp16 (half precision).",
    )
    parser.add_argument(
        "--alpha_upsampler",
        type=str,
        default="realesrgan",
        help="The upsampler for the alpha channels. Options: realesrgan | bicubic",
    )
    parser.add_argument(
        "--ext",
        type=str,
        default="auto",
        help="Image extension. Options: auto | jpg | png, auto means using the same extension as inputs",
    )
    parser.add_argument(
        "-g",
        "--gpu-id",
        type=int,
        default=None,
        help="gpu device to use (default=None) can be 0,1,2 for multi-gpu",
    )

    args = parser.parse_args()

    # determine models according to model names
    args.model_name = args.model_name.split(".")[0]
    if args.model_name == "RealESRGAN_x4plus":  # x4 RRDBNet model
        model = RRDBNet(
            num_in_ch=3,
            num_out_ch=3,
            num_feat=64,
            num_block=23,
            num_grow_ch=32,
            scale=4,
        )
        netscale = 4
        file_url = [
            "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth"
        ]
    elif args.model_name == "RealESRNet_x4plus":  # x4 RRDBNet model
        model = RRDBNet(
            num_in_ch=3,
            num_out_ch=3,
            num_feat=64,
            num_block=23,
            num_grow_ch=32,
            scale=4,
        )
        netscale = 4
        file_url = [
            "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth"
        ]
    elif (
        args.model_name == "RealESRGAN_x4plus_anime_6B"
    ):  # x4 RRDBNet model with 6 blocks
        model = RRDBNet(
            num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4
        )
        netscale = 4
        file_url = [
            "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth"
        ]
    elif args.model_name == "RealESRGAN_x2plus":  # x2 RRDBNet model
        model = RRDBNet(
            num_in_ch=3,
            num_out_ch=3,
            num_feat=64,
            num_block=23,
            num_grow_ch=32,
            scale=2,
        )
        netscale = 2
        file_url = [
            "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth"
        ]
    elif args.model_name == "realesr-animevideov3":  # x4 VGG-style model (XS size)
        model = SRVGGNetCompact(
            num_in_ch=3,
            num_out_ch=3,
            num_feat=64,
            num_conv=16,
            upscale=4,
            act_type="prelu",
        )
        netscale = 4
        file_url = [
            "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth"
        ]
    elif args.model_name == "realesr-general-x4v3":  # x4 VGG-style model (S size)
        model = SRVGGNetCompact(
            num_in_ch=3,
            num_out_ch=3,
            num_feat=64,
            num_conv=32,
            upscale=4,
            act_type="prelu",
        )
        netscale = 4
        file_url = [
            "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth",
            "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth",
        ]

    # determine model paths
    if args.model_path is not None:
        model_path = args.model_path
    else:
        model_path = os.path.join("weights", args.model_name + ".pth")
        if not os.path.isfile(model_path):
            ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
            for url in file_url:
                # model_path will be updated
                model_path = load_file_from_url(
                    url=url,
                    model_dir=os.path.join(ROOT_DIR, "weights"),
                    progress=True,
                    file_name=None,
                )

    # use dni to control the denoise strength
    dni_weight = None
    if args.model_name == "realesr-general-x4v3" and args.denoise_strength != 1:
        wdn_model_path = model_path.replace(
            "realesr-general-x4v3", "realesr-general-wdn-x4v3"
        )
        model_path = [model_path, wdn_model_path]
        dni_weight = [args.denoise_strength, 1 - args.denoise_strength]

    # restorer
    upsampler = RealESRGANer(
        scale=netscale,
        model_path=model_path,
        dni_weight=dni_weight,
        model=model,
        tile=args.tile,
        tile_pad=args.tile_pad,
        pre_pad=args.pre_pad,
        half=not args.fp32,
        gpu_id=args.gpu_id,
    )

    if args.face_enhance:  # Use GFPGAN for face enhancement
        from gfpgan import GFPGANer

        face_enhancer = GFPGANer(
            model_path="https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth",
            upscale=args.outscale,
            arch="clean",
            channel_multiplier=2,
            bg_upsampler=upsampler,
        )
    os.makedirs(args.output, exist_ok=True)

    if os.path.isfile(args.input):
        paths = [args.input]
    else:
        paths = sorted(glob.glob(os.path.join(args.input, "*")))

    for idx, path in enumerate(paths):
        imgname, extension = os.path.splitext(os.path.basename(path))
        print("Testing", idx, imgname)

        img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
        if len(img.shape) == 3 and img.shape[2] == 4:
            img_mode = "RGBA"
        else:
            img_mode = None

        try:
            if args.face_enhance:
                _, _, output = face_enhancer.enhance(
                    img, has_aligned=False, only_center_face=False, paste_back=True
                )
            else:
                output, _ = upsampler.enhance(img, outscale=args.outscale)
        except RuntimeError as error:
            print("Error", error)
            print(
                "If you encounter CUDA out of memory, try to set --tile with a smaller number."
            )
        else:
            if args.ext == "auto":
                extension = extension[1:]
            else:
                extension = args.ext
            if img_mode == "RGBA":  # RGBA images should be saved in png format
                extension = "png"
            if args.suffix == "":
                save_path = os.path.join(args.output, f"{imgname}.{extension}")
            else:
                save_path = os.path.join(
                    args.output, f"{imgname}_{args.suffix}.{extension}"
                )
            cv2.imwrite(save_path, output)


if __name__ == "__main__":
    main()