File size: 2,113 Bytes
3539c75
 
 
 
 
 
 
 
ae1fd26
 
 
3539c75
7faa7d5
3539c75
 
 
7faa7d5
 
 
 
 
 
 
 
3539c75
 
 
7faa7d5
 
 
 
 
3539c75
7faa7d5
 
 
 
3539c75
 
 
 
 
7faa7d5
3539c75
ae1fd26
7faa7d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import os

from tqdm import tqdm
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from qdrant_client import QdrantClient, models


MAX_QUESTIONS = 1000


def compute_embedding(sentences, emb_model):
    return emb_model.encode(sentences=sentences)


def get_questions(ds):
    questions_text = set()
    for i, item in enumerate(ds):
        if i == MAX_QUESTIONS:
            break
        for q_text in item['questions']['text']:
            questions_text.add(q_text)
    unique_questions = list(questions_text)
    return [{'question': q} for q in unique_questions]


def build_index():
    qdrant = QdrantClient(
        url=os.environ['QDRANT_URL'],
        api_key=os.environ['QDRANT_API_KEY'],
    )
    encoder = SentenceTransformer(model_name_or_path='BAAI/bge-small-en-v1.5')

    quora_ds = load_dataset(path='quora', split='train', streaming=True)
    quora_questions = get_questions(ds=quora_ds)

    qdrant.recreate_collection(
      collection_name='questions',
      vectors_config=models.VectorParams(
          size=encoder.get_sentence_embedding_dimension(),
          distance=models.Distance.COSINE
      )
    )

    BATCH_SIZE = 100
    question_batch = []
    for idx, entry in enumerate(tqdm(quora_questions, desc='Uploading vector embeddings in batch size of {}'.format(BATCH_SIZE))):
        if len(question_batch) < BATCH_SIZE:
            question_batch.append({
                'payload': entry,
                'id': idx
            })
        else:
            questions_list = [item['payload']['question'] for item in question_batch]
            embedding_batch = compute_embedding(questions_list, encoder).tolist()
            records = [
                models.Record(
                    id=entry['id'],
                    payload=entry['payload'],
                    vector=embedding
                ) for entry, embedding in zip(question_batch, embedding_batch)
            ]
            qdrant.upload_records(
                collection_name='questions',
                records=records
            )
            question_batch = []