File size: 1,630 Bytes
568da45
 
 
 
 
 
 
 
eb17be3
568da45
 
 
 
 
 
 
 
a5a9283
e9ea56c
 
6da6fb5
568da45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc98429
 
9fd13f7
bc98429
 
6e4d943
bc98429
4277006
9fd13f7
bc98429
 
bb145b6
bc98429
a6fd88e
568da45
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import gradio as gr
import torch
import os
import transformers
from transformers import (
    AutoModelForSequenceClassification,
    AutoTokenizer,
)
from utils import preprocess

device = 'cpu'
model_dir = "nealcly/detection-longformer"

# load the Longformer detector
tokenizer = AutoTokenizer.from_pretrained(model_dir)
model = AutoModelForSequenceClassification.from_pretrained(model_dir).to(device)

def detect(input_text,th=-3.08583984375):
    if len(input_text.split()) < 30:
        return 'It is not reliable to detect text with less than 30 words.'
    
    label2decisions = {
        0: "machine-generated",
        1: "human-written",
    }
    tokenize_input = tokenizer(input_text)
    tensor_input = torch.tensor([tokenize_input["input_ids"]]).to(device)
    outputs = model(tensor_input)
    is_machine = -outputs.logits[0][0].item()
    if is_machine < th:
        decision = 0
    else:
        decision = 1

    return label2decisions[decision]

description_e = """
This is a demo on Github project πŸƒ [Deepfake Text Detection in the Wild](https://github.com/yafuly/DeepfakeTextDetect).
                
🎯 Input the text to be detected, and click ''submit''' to get the detection result, either human-written or machine-generated.

βŒ›οΈ It takes about 6~ seconds to generate detection results.

🏠 Check out our  [Data Card πŸƒ](https://huggingface.co/datasets/yaful/DeepfakeTextDetect) and [Model Card πŸƒ](https://huggingface.co/nealcly/detection-longformer)
                
"""

        

iface = gr.Interface(fn=detect, inputs="text", outputs="text", description=description_e)
iface.launch()