File size: 7,764 Bytes
af9251e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from abc import ABC

from langchain.llms.base import LLM
import random
import torch
import transformers
from transformers.generation.logits_process import LogitsProcessor
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList
from typing import Optional, List, Dict, Any
from models.loader import LoaderCheckPoint
from models.base import (BaseAnswer,
                         AnswerResult)


class InvalidScoreLogitsProcessor(LogitsProcessor):
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        if torch.isnan(scores).any() or torch.isinf(scores).any():
            scores.zero_()
            scores[..., 5] = 5e4
        return scores


class LLamaLLM(BaseAnswer, LLM, ABC):
    checkPoint: LoaderCheckPoint = None
    # history = []
    history_len: int = 3
    max_new_tokens: int = 500
    num_beams: int = 1
    temperature: float = 0.5
    top_p: float = 0.4
    top_k: int = 10
    repetition_penalty: float = 1.2
    encoder_repetition_penalty: int = 1
    min_length: int = 0
    logits_processor: LogitsProcessorList = None
    stopping_criteria: Optional[StoppingCriteriaList] = None
    eos_token_id: Optional[int] = [2]

    state: object = {'max_new_tokens': 50,
                     'seed': 1,
                     'temperature': 0, 'top_p': 0.1,
                     'top_k': 40, 'typical_p': 1,
                     'repetition_penalty': 1.2,
                     'encoder_repetition_penalty': 1,
                     'no_repeat_ngram_size': 0,
                     'min_length': 0,
                     'penalty_alpha': 0,
                     'num_beams': 1,
                     'length_penalty': 1,
                     'early_stopping': False, 'add_bos_token': True, 'ban_eos_token': False,
                     'truncation_length': 2048, 'custom_stopping_strings': '',
                     'cpu_memory': 0, 'auto_devices': False, 'disk': False, 'cpu': False, 'bf16': False,
                     'load_in_8bit': False, 'wbits': 'None', 'groupsize': 'None', 'model_type': 'None',
                     'pre_layer': 0, 'gpu_memory_0': 0}

    def __init__(self, checkPoint: LoaderCheckPoint = None):
        super().__init__()
        self.checkPoint = checkPoint

    @property
    def _llm_type(self) -> str:
        return "LLamaLLM"

    @property
    def _check_point(self) -> LoaderCheckPoint:
        return self.checkPoint

    def encode(self, prompt, add_special_tokens=True, add_bos_token=True, truncation_length=None):
        input_ids = self.checkPoint.tokenizer.encode(str(prompt), return_tensors='pt',
                                                     add_special_tokens=add_special_tokens)
        # This is a hack for making replies more creative.
        if not add_bos_token and input_ids[0][0] == self.checkPoint.tokenizer.bos_token_id:
            input_ids = input_ids[:, 1:]

        # Llama adds this extra token when the first character is '\n', and this
        # compromises the stopping criteria, so we just remove it
        if type(self.checkPoint.tokenizer) is transformers.LlamaTokenizer and input_ids[0][0] == 29871:
            input_ids = input_ids[:, 1:]

        # Handling truncation
        if truncation_length is not None:
            input_ids = input_ids[:, -truncation_length:]

        return input_ids.cuda()

    def decode(self, output_ids):
        reply = self.checkPoint.tokenizer.decode(output_ids, skip_special_tokens=True)
        return reply

    # 将历史对话数组转换为文本格式
    def history_to_text(self, query, history):
        """
        历史对话软提示
            这段代码首先定义了一个名为 history_to_text 的函数,用于将 self.history
            数组转换为所需的文本格式。然后,我们将格式化后的历史文本
            再用 self.encode 将其转换为向量表示。最后,将历史对话向量与当前输入的对话向量拼接在一起。
        :return:
        """
        formatted_history = ''
        history = history[-self.history_len:] if self.history_len > 0 else []
        if len(history) > 0:
            for i, (old_query, response) in enumerate(history):
                formatted_history += "### Human:{}\n### Assistant:{}\n".format(old_query, response)
        formatted_history += "### Human:{}\n### Assistant:".format(query)
        return formatted_history

    def prepare_inputs_for_generation(self,
                                      input_ids: torch.LongTensor):
        """
        预生成注意力掩码和 输入序列中每个位置的索引的张量
        # TODO 没有思路
        :return:
        """

        mask_positions = torch.zeros((1, input_ids.shape[1]), dtype=input_ids.dtype).to(self.checkPoint.model.device)

        attention_mask = self.get_masks(input_ids, input_ids.device)

        position_ids = self.get_position_ids(
            input_ids,
            device=input_ids.device,
            mask_positions=mask_positions
        )

        return input_ids, position_ids, attention_mask

    @property
    def _history_len(self) -> int:
        return self.history_len

    def set_history_len(self, history_len: int = 10) -> None:
        self.history_len = history_len

    def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
        print(f"__call:{prompt}")
        if self.logits_processor is None:
            self.logits_processor = LogitsProcessorList()
        self.logits_processor.append(InvalidScoreLogitsProcessor())

        gen_kwargs = {
            "max_new_tokens": self.max_new_tokens,
            "num_beams": self.num_beams,
            "top_p": self.top_p,
            "do_sample": True,
            "top_k": self.top_k,
            "repetition_penalty": self.repetition_penalty,
            "encoder_repetition_penalty": self.encoder_repetition_penalty,
            "min_length": self.min_length,
            "temperature": self.temperature,
            "eos_token_id": self.checkPoint.tokenizer.eos_token_id,
            "logits_processor": self.logits_processor}

        #  向量转换
        input_ids = self.encode(prompt, add_bos_token=self.state['add_bos_token'], truncation_length=self.max_new_tokens)
        # input_ids, position_ids, attention_mask = self.prepare_inputs_for_generation(input_ids=filler_input_ids)


        gen_kwargs.update({'inputs': input_ids})
        # 注意力掩码
        # gen_kwargs.update({'attention_mask': attention_mask})
        # gen_kwargs.update({'position_ids': position_ids})
        if self.stopping_criteria is None:
            self.stopping_criteria = transformers.StoppingCriteriaList()
        # 观测输出
        gen_kwargs.update({'stopping_criteria': self.stopping_criteria})

        output_ids = self.checkPoint.model.generate(**gen_kwargs)
        new_tokens = len(output_ids[0]) - len(input_ids[0])
        reply = self.decode(output_ids[0][-new_tokens:])
        print(f"response:{reply}")
        print(f"+++++++++++++++++++++++++++++++++++")
        return reply

    def generatorAnswer(self, prompt: str,
                         history: List[List[str]] = [],
                         streaming: bool = False):

        # TODO 需要实现chat对话模块和注意力模型,目前_call为langchain的LLM拓展的api,默认为无提示词模式,如果需要操作注意力模型,可以参考chat_glm的实现
        softprompt = self.history_to_text(prompt,history=history)
        response = self._call(prompt=softprompt, stop=['\n###'])

        answer_result = AnswerResult()
        answer_result.history = history + [[prompt, response]]
        answer_result.llm_output = {"answer": response}
        yield answer_result