File size: 4,277 Bytes
089b3d5
 
5270826
206e6f2
089b3d5
 
 
 
 
168e3f1
84b8f07
61b9726
089b3d5
 
 
f065c65
d0d9591
089b3d5
61b9726
 
 
089b3d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61b9726
 
 
 
 
 
 
 
 
 
 
 
 
 
089b3d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61b9726
 
 
 
 
 
 
 
 
 
 
 
 
 
089b3d5
 
 
 
206e6f2
089b3d5
 
 
 
 
 
206e6f2
8f2d0ff
d0d9591
 
 
 
 
 
 
 
 
 
206e6f2
5270826
 
089b3d5
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
from fastapi import APIRouter, Depends
from fastapi.responses import StreamingResponse
from PIL import Image, ImageEnhance
from fastapi import HTTPException
import io
import requests
import os
from dotenv import load_dotenv
from pydantic import BaseModel
from pymongo import MongoClient
from models import *
from huggingface_hub import InferenceClient

class FluxAI(BaseModel):
    user_id: int
    args: str
    auto_enhancer: bool = False

class MistralAI(BaseModel):
    args: str

router = APIRouter()

load_dotenv()
MONGO_URL = os.environ["MONGO_URL"]
HUGGING_TOKEN = os.environ["HUGGING_TOKEN"]

client_mongo = MongoClient(MONGO_URL)
db = client_mongo["tiktokbot"]
collection = db["users"]

async def schellwithflux(args):
    API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
    headers = {"Authorization": f"Bearer {HUGGING_TOKEN}"}
    payload = {"inputs": args}
    response = requests.post(API_URL, headers=headers, json=payload)
    if response.status_code != 200:
        print(f"Error status {response.status_code}")
        return None
    return response.content

async def mistralai_post_message(message_str):
    client = InferenceClient(
        "mistralai/Mixtral-8x7B-Instruct-v0.1",
        token=HUGGING_TOKEN
    )
    output = ""
    for message in client.chat_completion(
        messages=[{"role": "user", "content": message_str}],
        max_tokens=500,
        stream=True
    ):
        output += message.choices[0].delta.content
    return output

def get_user_tokens_gpt(user_id):
    user = collection.find_one({"user_id": user_id})
    if not user:
        return 0
    return user.get("tokens", 0)

def deduct_tokens_gpt(user_id, amount):
    tokens = get_user_tokens_gpt(user_id)
    if tokens >= amount:
        collection.update_one(
            {"user_id": user_id},
            {"$inc": {"tokens": -amount}}
        )
        return True
    else:
        return False

@router.post("/akeno/mistralai", response_model=SuccessResponse, responses={422: {"model": SuccessResponse}})
async def mistralai_(payload: MistralAI):
        try:
            response = await mistralai_post_message(payload.args)
            return SuccessResponse(
                status="True",
                randydev={"message": response}
            )
        except Exception as e:
            return SuccessResponse(
                status="False",
                randydev={"error": f"An error occurred: {str(e)}"}
            )

@router.post("/akeno/fluxai", response_model=SuccessResponse, responses={422: {"model": SuccessResponse}})
async def fluxai_image(payload: FluxAI):
    if deduct_tokens_gpt(payload.user_id, amount=20):
        try:
            # Generate the image from the flux AI model
            image_bytes = await schellwithflux(payload.args)
            if image_bytes is None:
                return SuccessResponse(
                    status="False",
                    randydev={"error": "Failed to generate an image"}
                )
            
            if payload.auto_enhancer:
                with Image.open(io.BytesIO(image_bytes)) as image:
                    enhancer = ImageEnhance.Sharpness(image)
                    image = enhancer.enhance(1.5)
                    enhancer = ImageEnhance.Contrast(image)
                    image = enhancer.enhance(1.2)
                    enhancer = ImageEnhance.Color(image)
                    image = enhancer.enhance(1.1)
                    enhanced_image_bytes = io.BytesIO()
                    image.save(enhanced_image_bytes, format="JPEG", quality=95)
                    enhanced_image_bytes.seek(0)
                return StreamingResponse(enhanced_image_bytes, media_type="image/jpeg")
            else:
                return StreamingResponse(io.BytesIO(image_bytes), media_type="image/jpeg")
        
        except Exception as e:
            return SuccessResponse(
                status="False",
                randydev={"error": f"An error occurred: {str(e)}"}
            )
    else:
        tokens = get_user_tokens_gpt(payload.user_id)
        return SuccessResponse(
            status="False",
            randydev={"error": f"Not enough tokens. Current tokens: {tokens}. Please support @xtdevs"}
        )