File size: 7,587 Bytes
ab2adfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b0e8d0
ab2adfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b0e8d0
ab2adfb
 
2b0e8d0
 
 
ab2adfb
2b0e8d0
 
 
 
 
 
 
 
ab2adfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b0e8d0
 
 
 
 
 
ab2adfb
 
2b0e8d0
ab2adfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import numpy as np
import re
import time
from nltk.corpus import stopwords
from sklearn.feature_extraction.text import TfidfVectorizer
# from sklearn.linear_model import LogisticRegression
# from sklearn.svm import SVC
import ssl
import os
import nltk
try:
    _create_unverified_https_context = ssl._create_unverified_context
except AttributeError:
    pass
else:
    ssl._create_default_https_context = _create_unverified_https_context
# print(f"nltk version: {nltk.__version__}")
# nltk.download('stopwords')

# 
class SVMModel:
    def __init__(self, learning_rate=0.01, lambda_param=0.01, n_iters=1000):
        self.learning_rate = learning_rate
        self.lambda_param = lambda_param
        self.n_iters = n_iters
        self.w = None
        self.b = None
        
        self.X_train = None
        self.X_test = None
        self.y_train = None
        self.y_test = None

    def fit(self, X, y):
        n_samples, n_features = X.shape
        y_ = np.where(y <= 0, -1, 1)  # Convert labels to -1 and 1

        print(f"y_ max: {np.max(y_)}, y_ min: {np.min(y_)}")

        self.w = np.zeros(n_features)
        self.b = 0
        
        self.lambda_param = 1.0 / float(n_samples)

        for _ in range(self.n_iters):
            print(f"Epoch: {_}")
            for idx, x_i in enumerate(X):
                condition = y_[idx] * (np.dot(x_i, self.w) - self.b) >= 1
                if condition:
                    self.w = self.w -  self.learning_rate * (2 * self.lambda_param * self.w)
                else:
                    self.w = self.w  - self.learning_rate * (2 * self.lambda_param * self.w - np.dot(x_i, y_[idx]))
                    self.b = self.b - self.learning_rate * y_[idx]
            if _ % 1 == 0:
                # print(f"Iteration: {_}")
                st_time = time.time()
                self.test()
                print(f"Time: {time.time() - st_time}")

    def predict(self, X):
        
        linear_output = np.matmul(X, self.w[:, None]) - self.b # []
        return np.sign(linear_output[:, 0])
    
    def test(self, ):
        # test_ours(self, ):
        linear_output = self.predict(self.X_test)
        print(f"linear_output: {linear_output.shape}, self.X_test: {self.X_test.shape}")
        acc = np.mean((linear_output == np.sign(self.y_test)).astype(np.float32))
        print(f"Test Acc: {acc}")
        return linear_output
    
    # weights_dict = self.svm_model.get_weights_dict()
    def get_weights_dict(self, ):
        weights_dict = {
            'w': self.w,
            'b': self.b
        }
        return weights_dict

class SVM:
    def __init__(self, ):
        # file_path = 
        self.x_train = []
        self.y_train = []
        self.x_test = []
        self.y_test = []
        
        self.data_folder = '.'
        
        print(f"Start loading data")
        # self._load_data()
        
        print(f"Setting vectorizer")
        # self.vectorizer = TfidfVectorizer(max_features=4000, min_df=7, max_df=0.8, stop_words=stopwords.words('english'))
        # parmas_dict = np.load("svm_vectorizer.npy", allow_pickle=True).item()
        # print(f"parmas_dict: {parmas_dict.keys()}")
        
        
        # self.vectorizer.set_params(**parmas_dict)
        
        import pickle
        self.vectorizer = pickle.load(open("tfidf.pickle", "rb"))
        
        # print(f"Start preprocessing data")
        # self._preprocess_data()
        
        # self.setup_model()
        self.setup_model_ours()
        
        pass
    
    def _load_data(self, ):

        file_path = '.'
        x_train = []
        y_train = []
        with open(os.path.join(self.data_folder, 'train.csv'), "r") as f:
            for line in f:
                l = line.strip().split(',')
                senti, text = l[0], re.sub('[^a-zA-Z \']', '', re.sub('\\\\n', ' ', ','.join(l[1:]))).lower()
                x_train.append(text)
                y_train.append(int(senti[1]) - 1)
            f.close()

        x_test = []
        y_test = []
        with open(os.path.join(self.data_folder, 'test.csv'), "r") as f:
            for line in f:
                l = line.strip().split(',')
                senti, text = l[0], re.sub('[^a-zA-Z \']', '', re.sub('\\\\n', ' ', ','.join(l[1:]))).lower()
                x_test.append(text)
                y_test.append(int(senti[1]) - 1)
            f.close()
        self.x_train = x_train
        self.x_test = x_test
        self.y_train = np.array(y_train, dtype=np.int32)
        self.y_test = np.array(y_test, dtype=np.int32)
        print(f"max_y_train: {np.max(self.y_train)}, min_y_train: {np.min(self.y_train)}")
    
    def _preprocess_data(self, ):
        self.X_train = self.vectorizer.fit_transform(self.x_train).toarray()
        
        import pickle
        # self.vectorizer_params = self.vectorizer.get_params()
        # np.save("svm_vectorizer.npy", self.vectorizer_params)
        pickle.dump(self.vectorizer, open("tfidf.pickle", "wb"))
        
        self.X_test = self.vectorizer.transform(self.x_test).toarray()
        
        # self.X_train = self.vectorizer.transform
    
    
        
    def setup_model_ours(self, ):
        self.svm_model = SVMModel()
    
    def train_ours(self, ):
        self.y_train = self.y_train.astype(np.float32)
        self.y_test = self.y_test.astype(np.float32)
        self.y_train = self.y_train * 2 - 1.0
        self.y_test = self.y_test * 2 - 1.0
        
        print(f"max_y_train: {np.max(self.y_train)}, min_y_train: {np.min(self.y_train)}")
        
        self.svm_model.X_train = self.X_train
        self.svm_model.X_test = self.X_test
        self.svm_model.y_train = self.y_train
        self.svm_model.y_test = self.y_test
        
        self.svm_model.fit(self.X_train, self.y_train)
        
    def test_ours(self, ):
        linear_output = self.svm_model.test()
        acc = np.mean((linear_output == np.sign(self.y_test)).astype(np.float32))
        print(f"Test Acc: {acc}")
        
        weights_dict = self.svm_model.get_weights_dict()
        np.save("svm_weights.npy", weights_dict)
        print(f"svm weights saved to svm_weights.npy")
        
    
        
    # def setup_model(self, ):
    #     self.svc = SVC()
        
    # def train(self, ):
    #     self.svc.fit(self.X_train, self.y_train)
    
    # def test(self, ):
    #     self.train_acc = self.svc.score(self.X_train, self.y_train)
    #     self.test_acc = self.svc.score(self.X_test, self.y_test)
        
    #     print(f'Train Acc: {self.train_acc * 100}\n', f'Test Acc: {self.test_acc * 100}\n')



# CUDA_VISIBLE_DEVICES=2 python log_reg.py

# y_train = np.asarray(y_train)
# y_test = np.asarray(y_test)

# print(f"After getting data")

# start_time = time.time()
# vectorizer = TfidfVectorizer(max_features=4000, min_df=7, max_df=0.8, stop_words=stopwords.words('english'))

# print(f"After setting the vectorizer")
# X_train = vectorizer.fit_transform(x_train).toarray()
# X_test = vectorizer.transform(x_test).toarray()

# print(f"X_train: {X_train.shape}, X_test: {X_test.shape}")

# # lr_classfier = LogisticRegression()
# # lr_classfier.fit(X_train,y_train)
# # train_acc = lr_classfier.score(X_train,y_train)
# # test_acc = lr_classfier.score(X_test,y_test)

# svc = SVC()
# svc.fit(X_train,y_train)
# train_acc = svc.score(X_train,y_train)
# test_acc = svc.score(X_test,y_test)

# print('Train Acc: %.2f' % float(train_acc*100), 'Test Acc: %.2f' % float(test_acc*100),'Time: %.4f' % float(time.time()-start_time))
# # CUDA_VISIBLE_DEVICES=2 python log_reg.py