File size: 6,029 Bytes
ab2adfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
import torch.distributed as dist

import math


class LSTMCell(nn.Module):

    def __init__(self, input_size, hidden_size, bias=True):
        super(LSTMCell, self).__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.bias = bias
        self.x2h = nn.Linear(input_size, 4 * hidden_size, bias=bias)
        self.h2h = nn.Linear(hidden_size, 4 * hidden_size, bias=bias)
        self.reset_parameters()



    def reset_parameters(self):
        std = 1.0 / math.sqrt(self.hidden_size)
        for w in self.parameters():
            w.data.uniform_(-std, std)
    
    def forward(self, x, hidden):
        
        hx, cx = hidden
        
        x = x.view(-1, x.size(1))
        
        gates = self.x2h(x) + self.h2h(hx)
        
        # print(f"gates: {gates.shape}")
    
        # gates = gates.squeeze()
        
        
        
        ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1)
        
        ingate = F.sigmoid(ingate)
        forgetgate = F.sigmoid(forgetgate)
        cellgate = F.tanh(cellgate)
        outgate = F.sigmoid(outgate)
        

        cy = torch.mul(cx, forgetgate) +  torch.mul(ingate, cellgate)        

        hy = torch.mul(outgate, F.tanh(cy))
        
        return (hy, cy)
    
class LSTMModel(nn.Module):
    def __init__(self, input_dim, hidden_dim, layer_dim, output_dim, bias=True):
        super(LSTMModel, self).__init__()
        # Hidden dimensions
        self.hidden_dim = hidden_dim
         
        # Number of hidden layers
        self.layer_dim = layer_dim
               
        self.lstm = LSTMCell(input_dim, hidden_dim, layer_dim)  
        
        self.fc = nn.Linear(hidden_dim, output_dim)
     
    
    
    def forward(self, x):
        
        # Initialize hidden state with zeros
        #######################
        #  USE GPU FOR MODEL  #
        #######################
        #print(x.shape,"x.shape")100, 28, 28
        if torch.cuda.is_available():
            h0 = Variable(torch.zeros(self.layer_dim, x.size(0), self.hidden_dim).cuda())
        else:
            h0 = Variable(torch.zeros(self.layer_dim, x.size(0), self.hidden_dim))

        # Initialize cell state
        if torch.cuda.is_available():
            c0 = Variable(torch.zeros(self.layer_dim, x.size(0), self.hidden_dim).cuda())
        else:
            c0 = Variable(torch.zeros(self.layer_dim, x.size(0), self.hidden_dim))

                    
       
        outs = []
        
        cn = c0[0,:,:]
        hn = h0[0,:,:]

        for seq in range(x.size(1)):
            hn, cn = self.lstm(x[:,seq,:], (hn,cn)) 
            outs.append(hn)
            
    

        out = outs[-1] # .squeeze()
        
        out = self.fc(out) 
        # out.size() --> 100, 10
        return out
    

class LSTM_model(nn.Module):
    def __init__(self, vocab_size, n_hidden):
        super(LSTM_model, self).__init__()

        self.embedding = nn.Embedding(vocab_size, n_hidden) 


        self.lstm = LSTMModel(n_hidden, n_hidden, n_hidden, n_hidden)
        self.fc_output = nn.Linear(n_hidden, 1)


        self.loss = nn.BCEWithLogitsLoss()

    def forward(self, X, t, train=True):

        embed = self.embedding(X) # batch_size, time_steps, features
        no_of_timesteps = embed.shape[1]
        n_hidden = embed.shape[2]
        
        input = embed
        
        # print(f"input: {input.shape}")
        
        fc_out = self.lstm(input) ## bsz x nnhidden_dim
        
        # print(f"fc_out: {fc_out.size()}")
        h = self.fc_output(fc_out)
        # print(f"h: {h.size()}")
        
        return self.loss(h[:, 0], t), h[:, 0] 

class BiLSTM(nn.Module):
    def __init__(self, input_size, hidden_size, bias=True):
        super(BiLSTM, self).__init__()
        self.forward_cell = LSTMCell(input_size, hidden_size, bias)
        self.backward_cell = LSTMCell(input_size, hidden_size, bias)

    def forward(self, input_seq):
        forward_outputs = []
        backward_outputs = []

        forward_hidden = (torch.zeros(input_seq.size(0), self.forward_cell.hidden_size).to(input_seq.device),
                          torch.zeros(input_seq.size(0), self.forward_cell.hidden_size).to(input_seq.device))
        backward_hidden = (torch.zeros(input_seq.size(0), self.backward_cell.hidden_size).to(input_seq.device),
                           torch.zeros(input_seq.size(0), self.backward_cell.hidden_size).to(input_seq.device))

        for t in range(input_seq.size(1)):
            forward_hidden = self.forward_cell(input_seq[:, t], forward_hidden)
            forward_outputs.append(forward_hidden[0])

        for t in range(input_seq.size(1)-1, -1, -1):
            backward_hidden = self.backward_cell(input_seq[:, t], backward_hidden)
            backward_outputs.append(backward_hidden[0])

        forward_outputs = torch.stack(forward_outputs, dim=1)
        backward_outputs = torch.stack(backward_outputs, dim=1)

        outputs = torch.cat((forward_outputs, backward_outputs), dim=2)

        return outputs

class BiLSTMModel(nn.Module):
    def __init__(self, vocab_size, n_hidden):
        super(BiLSTMModel, self).__init__()

        self.embedding = nn.Embedding(vocab_size, n_hidden)
        self.bilstm = BiLSTM(n_hidden, n_hidden)
        self.fc_output = nn.Linear(2*n_hidden, 1)
        self.loss = nn.BCEWithLogitsLoss()

    def forward(self, X, t, train=True):
        embed = self.embedding(X) # batch_size, time_steps, features
        no_of_timesteps = embed.shape[1]
        n_hidden = embed.shape[2]
        
        input = embed
        bilstm_out = self.bilstm(input) ## bsz x nnhidden_dim
        bilstm_out = bilstm_out[:, -1, :]
        h = self.fc_output(bilstm_out)
        # print(f"bilstm_out: {bilstm_out.shape}, h: {h.shape}, t: {t.shape}")
        return self.loss(h[:,0], t), h[:, 0]