Spaces:
Running
Running
File size: 17,752 Bytes
710e818 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
import torch
import torch.nn.functional as F
import cv2 as cv
import numpy as np
import os
from glob import glob
from icecream import ic
from scipy.spatial.transform import Rotation as Rot
from scipy.spatial.transform import Slerp
# This function is borrowed from IDR: https://github.com/lioryariv/idr
def load_K_Rt_from_P(filename, P=None):
if P is None:
lines = open(filename).read().splitlines()
if len(lines) == 4:
lines = lines[1:]
lines = [[x[0], x[1], x[2], x[3]] for x in (x.split(" ") for x in lines)]
P = np.asarray(lines).astype(np.float32).squeeze()
out = cv.decomposeProjectionMatrix(P)
K = out[0]
R = out[1]
t = out[2]
K = K / K[2, 2]
intrinsics = np.eye(4)
intrinsics[:3, :3] = K
pose = np.eye(4, dtype=np.float32)
pose[:3, :3] = R.transpose()
pose[:3, 3] = (t[:3] / t[3])[:, 0]
return intrinsics, pose
def filter_iamges_via_pixel_values(data_dir):
images_lis = sorted(glob(os.path.join(data_dir, 'image/*.png'))) ## images lis ##
n_images = len(images_lis)
images_np = np.stack([cv.imread(im_name) for im_name in images_lis]) / 255.0
print(f"images_np: {images_np.shape}")
# nn_frames x res x res x 3 #
images_np = 1. - images_np
has_density_values = (np.sum(images_np, axis=-1) > 0.7).astype(np.float32)
has_density_values = np.sum(np.sum(has_density_values, axis=-1), axis=-1)
tot_res_nns = float(images_np.shape[1] * images_np.shape[2])
has_density_ratio = has_density_values / tot_res_nns ### has density ratio and ratio #
print(f"has_density_values: {has_density_values.shape}")
paried_has_density_ratio_list = [(i_fr, has_density_ratio[i_fr].item()) for i_fr in range(has_density_ratio.shape[0])]
paried_has_density_ratio_list = sorted(paried_has_density_ratio_list, key=lambda ii: ii[1], reverse=True)
mid_rnk_value = len(paried_has_density_ratio_list) // 4
print(f"mid value of the density ratio")
print(paried_has_density_ratio_list[mid_rnk_value])
iamge_idx = paried_has_density_ratio_list[mid_rnk_value][0]
print(f"iamge idx: {images_lis[iamge_idx]}")
print(paried_has_density_ratio_list[:mid_rnk_value])
tot_selected_img_idx_list = [ii[0] for ii in paried_has_density_ratio_list[:mid_rnk_value]]
tot_selected_img_idx_list =sorted(tot_selected_img_idx_list)
print(len(tot_selected_img_idx_list))
# print(tot_selected_img_idx_list[54])
print(tot_selected_img_idx_list)
class Dataset:
def __init__(self, conf):
super(Dataset, self).__init__()
print('Load data: Begin')
self.device = torch.device('cuda')
self.conf = conf
self.selected_img_idxes_list = [0, 1, 5, 6, 7, 8, 9, 13, 14, 15, 35, 36, 42, 43, 44, 48, 49, 50, 51, 55, 56, 57, 61, 62, 63, 69, 84, 90, 91, 92, 96, 97]
# self.selected_img_idxes_list = [0, 1, 5, 6, 7, 8, 9, 12, 13, 14, 15, 20, 21, 22, 23, 26, 27, 28, 29, 35, 36, 37, 40, 41, 70, 71, 79, 82, 83, 84, 85, 92, 93, 96, 97, 98, 99, 105, 106, 107, 110, 111, 112, 113, 118, 119, 120, 121, 124, 125, 133, 134, 135, 139, 174, 175, 176, 177, 180, 188, 189, 190, 191, 194, 195]
self.selected_img_idxes_list = [0, 1, 6, 7, 8, 9, 12, 13, 14, 15, 20, 21, 22, 23, 26, 27, 36, 40, 41, 70, 71, 78, 82, 83, 84, 85, 90, 91, 92, 93, 96, 97]
self.selected_img_idxes_list = [0, 1, 6, 7, 8, 9, 12, 13, 14, 15, 20, 21, 22, 23, 26, 27, 36, 40, 41, 70, 71, 78, 82, 83, 84, 85, 90, 91, 92, 93, 96, 97, 98, 99, 104, 105, 106, 107, 110, 111, 112, 113, 118, 119, 120, 121, 124, 125, 134, 135, 139, 174, 175, 176, 177, 180, 181, 182, 183, 188, 189, 190, 191, 194, 195]
self.selected_img_idxes_list = [0, 1, 6, 7, 8, 9, 12, 13, 14, 20, 21, 22, 23, 26, 27, 70, 78, 83, 84, 85, 91, 92, 93, 96, 97, 98, 99, 105, 106, 107, 110, 111, 112, 113, 119, 120, 121, 124, 125, 175, 176, 181, 182, 188, 189, 190, 191, 194, 195]
# or the timestep to the dataset instance ## # selected img idxes list #
self.selected_img_idxes = np.array(self.selected_img_idxes_list).astype(np.int32)
self.data_dir = conf.get_string('data_dir')
self.render_cameras_name = conf.get_string('render_cameras_name')
self.object_cameras_name = conf.get_string('object_cameras_name')
## camera outside sphere ##
self.camera_outside_sphere = conf.get_bool('camera_outside_sphere', default=True)
self.scale_mat_scale = conf.get_float('scale_mat_scale', default=1.1)
camera_dict = np.load(os.path.join(self.data_dir, self.render_cameras_name))
# camera_dict = np.load("/home/xueyi/diffsim/NeuS/public_data/dtu_scan24/cameras_sphere.npz")
self.camera_dict = camera_dict # rendr camera dict #
# render camera dict # # number of pixels in the views -> very thin geometry is not useful
self.images_lis = sorted(glob(os.path.join(self.data_dir, 'image/*.png')))
# iamges_lis # and the images_lis and the images_lis #
# self.images_lis = self.images_lis[:1] # totoal views and poses of the camera; # and select cameras for rendering #
self.n_images = len(self.images_lis)
self.images_np = np.stack([cv.imread(im_name) for im_name in self.images_lis]) / 256.0
self.selected_img_idxes_list = list(range(self.images_np.shape[0]))
self.selected_img_idxes = np.array(self.selected_img_idxes_list).astype(np.int32)
self.images_np = self.images_np[self.selected_img_idxes] ## get selected iamges_np #
### if we deal with the backgound carefully ### ### get
self.images_np = np.stack([cv.imread(im_name) for im_name in self.images_lis]) / 255.0
self.images_np = self.images_np[self.selected_img_idxes]
self.images_np = 1. - self.images_np ###
self.masks_lis = sorted(glob(os.path.join(self.data_dir, 'mask/*.png')))
# self.masks_lis = self.masks_lis[:1]
try:
self.masks_np = np.stack([cv.imread(im_name) for im_name in self.masks_lis]) / 256.0
self.masks_np = self.masks_np[self.selected_img_idxes]
except:
self.masks_np = self.images_np.copy()
# world_mat is a projection matrix from world to image
self.world_mats_np = [camera_dict['world_mat_%d' % idx].astype(np.float32) for idx in range(self.n_images)]
self.scale_mats_np = []
# scale_mat: used for coordinate normalization, we assume the scene to render is inside a unit sphere at origin.
self.scale_mats_np = [camera_dict['scale_mat_%d' % idx].astype(np.float32) for idx in range(self.n_images)]
self.intrinsics_all = []
self.pose_all = []
# for idx, (scale_mat, world_mat) in enumerate(zip(self.scale_mats_np, self.world_mats_np)):
for idx in self.selected_img_idxes_list:
scale_mat = self.scale_mats_np[idx]
world_mat = self.world_mats_np[idx]
if "hand" in self.data_dir:
intrinsics = np.eye(4)
fov = 512. / 2. # * 2
res = 512.
intrinsics[:3, :3] = np.array([
[fov, 0, 0.5* res], # res #
[0, fov, 0.5* res], # res #
[0, 0, 1]
], dtype=np.float32)
pose = camera_dict['camera_mat_%d' % idx].astype(np.float32)
else:
P = world_mat @ scale_mat
P = P[:3, :4]
intrinsics, pose = load_K_Rt_from_P(None, P)
self.intrinsics_all.append(torch.from_numpy(intrinsics).float())
self.pose_all.append(torch.from_numpy(pose).float())
### images, masks,
self.images = torch.from_numpy(self.images_np.astype(np.float32)).cpu() # [n_images, H, W, 3] #
self.masks = torch.from_numpy(self.masks_np.astype(np.float32)).cpu() # [n_images, H, W, 3] #
self.intrinsics_all = torch.stack(self.intrinsics_all).to(self.device) # [n_images, 4, 4] # optimize sdf field # rigid model hand
self.intrinsics_all_inv = torch.inverse(self.intrinsics_all) # [n_images, 4, 4]
self.focal = self.intrinsics_all[0][0, 0]
self.pose_all = torch.stack(self.pose_all).to(self.device) # [n_images, 4, 4]
self.H, self.W = self.images.shape[1], self.images.shape[2]
self.image_pixels = self.H * self.W
object_bbox_min = np.array([-1.01, -1.01, -1.01, 1.0])
object_bbox_max = np.array([ 1.01, 1.01, 1.01, 1.0])
# Object scale mat: region of interest to **extract mesh**
object_scale_mat = np.load(os.path.join(self.data_dir, self.object_cameras_name))['scale_mat_0']
object_bbox_min = np.linalg.inv(self.scale_mats_np[0]) @ object_scale_mat @ object_bbox_min[:, None]
object_bbox_max = np.linalg.inv(self.scale_mats_np[0]) @ object_scale_mat @ object_bbox_max[:, None]
self.object_bbox_min = object_bbox_min[:3, 0]
self.object_bbox_max = object_bbox_max[:3, 0]
self.n_images = self.images.size(0)
print('Load data: End')
def get_rays(H, W, K, c2w, inverse_y, flip_x, flip_y, mode='center'):
i, j = torch.meshgrid( # meshgrid #
torch.linspace(0, W-1, W, device=c2w.device),
torch.linspace(0, H-1, H, device=c2w.device))
i = i.t().float()
j = j.t().float()
if mode == 'lefttop':
pass
elif mode == 'center':
i, j = i+0.5, j+0.5
elif mode == 'random':
i = i+torch.rand_like(i)
j = j+torch.rand_like(j)
else:
raise NotImplementedError
if flip_x:
i = i.flip((1,))
if flip_y:
j = j.flip((0,))
if inverse_y:
dirs = torch.stack([(i-K[0][2])/K[0][0], (j-K[1][2])/K[1][1], torch.ones_like(i)], -1)
else:
dirs = torch.stack([(i-K[0][2])/K[0][0], -(j-K[1][2])/K[1][1], -torch.ones_like(i)], -1)
# Rotate ray directions from camera frame to the world frame
rays_d = torch.sum(dirs[..., np.newaxis, :] * c2w[:3,:3], -1) # dot product, equals to: [c2w.dot(dir) for dir in dirs]
# Translate camera frame's origin to the world frame. It is the origin of all rays.
rays_o = c2w[:3,3].expand(rays_d.shape)
return rays_o, rays_d
def gen_rays_at(self, img_idx, resolution_level=1):
"""
Generate rays at world space from one camera.
"""
l = resolution_level
tx = torch.linspace(0, self.W - 1, self.W // l)
ty = torch.linspace(0, self.H - 1, self.H // l)
pixels_x, pixels_y = torch.meshgrid(tx, ty)
##### previous method #####
# p = torch.stack([pixels_x, pixels_y, torch.ones_like(pixels_y)], dim=-1) # W, H, 3
# # p = torch.stack([pixels_x, pixels_y, -1. * torch.ones_like(pixels_y)], dim=-1) # W, H, 3
# p = torch.matmul(self.intrinsics_all_inv[img_idx, None, None, :3, :3], p[:, :, :, None]).squeeze() # W, H, 3
# rays_v = p / torch.linalg.norm(p, ord=2, dim=-1, keepdim=True) # W, H, 3
# rays_v = torch.matmul(self.pose_all[img_idx, None, None, :3, :3], rays_v[:, :, :, None]).squeeze() # W, H, 3
# rays_o = self.pose_all[img_idx, None, None, :3, 3].expand(rays_v.shape) # W, H, 3
##### previous method #####
fov = 512.; res = 512.
K = np.array([
[fov, 0, 0.5* res],
[0, fov, 0.5* res],
[0, 0, 1]
], dtype=np.float32)
K = torch.from_numpy(K).float().cuda()
# ### `center` mode ### #
c2w = self.pose_all[img_idx]
pixels_x, pixels_y = pixels_x+0.5, pixels_y+0.5
dirs = torch.stack([(pixels_x-K[0][2])/K[0][0], -(pixels_y-K[1][2])/K[1][1], -torch.ones_like(pixels_x)], -1)
rays_v = torch.sum(dirs[..., np.newaxis, :] * c2w[:3,:3], -1)
rays_o = c2w[:3,3].expand(rays_v.shape)
# dirs = torch.stack([(i-K[0][2])/K[0][0], -(j-K[1][2])/K[1][1], -torch.ones_like(i)], -1)
# p = torch.stack([pixels_x, pixels_y, torch.ones_like(pixels_y)], dim=-1) # W, H, 3
# # p = torch.stack([pixels_x, pixels_y, -1. * torch.ones_like(pixels_y)], dim=-1) # W, H, 3
# p = torch.matmul(self.intrinsics_all_inv[img_idx, None, None, :3, :3], p[:, :, :, None]).squeeze() # W, H, 3
# rays_v = p / torch.linalg.norm(p, ord=2, dim=-1, keepdim=True) # W, H, 3
# rays_v = torch.matmul(self.pose_all[img_idx, None, None, :3, :3], rays_v[:, :, :, None]).squeeze() # W, H, 3
# rays_o = self.pose_all[img_idx, None, None, :3, 3].expand(rays_v.shape) # W, H, 3
return rays_o.transpose(0, 1), rays_v.transpose(0, 1)
def gen_random_rays_at(self, img_idx, batch_size):
"""
Generate random rays at world space from one camera.
"""
pixels_x = torch.randint(low=0, high=self.W, size=[batch_size])
pixels_y = torch.randint(low=0, high=self.H, size=[batch_size])
color = self.images[img_idx][(pixels_y, pixels_x)] # batch_size, 3
mask = self.masks[img_idx][(pixels_y, pixels_x)] # batch_size, 3
##### previous method #####
# p = torch.stack([pixels_x, pixels_y, torch.ones_like(pixels_y)], dim=-1).float() # batch_size, 3
# # p = torch.stack([pixels_x, pixels_y, -1. * torch.ones_like(pixels_y)], dim=-1).float() # batch_size, 3
# p = torch.matmul(self.intrinsics_all_inv[img_idx, None, :3, :3], p[:, :, None]).squeeze() # batch_size, 3
# rays_v = p / torch.linalg.norm(p, ord=2, dim=-1, keepdim=True) # batch_size, 3
# rays_v = torch.matmul(self.pose_all[img_idx, None, :3, :3], rays_v[:, :, None]).squeeze() # batch_size, 3
# rays_o = self.pose_all[img_idx, None, :3, 3].expand(rays_v.shape) # batch_size, 3
##### previous method #####
fov = 512.; res = 512.
K = np.array([
[fov, 0, 0.5* res],
[0, fov, 0.5* res],
[0, 0, 1]
], dtype=np.float32)
K = torch.from_numpy(K).float().cuda()
# ### `center` mode ### #
c2w = self.pose_all[img_idx]
pixels_x, pixels_y = pixels_x+0.5, pixels_y+0.5
dirs = torch.stack([(pixels_x-K[0][2])/K[0][0], -(pixels_y-K[1][2])/K[1][1], -torch.ones_like(pixels_x)], -1)
rays_v = torch.sum(dirs[..., np.newaxis, :] * c2w[:3,:3], -1)
rays_o = c2w[:3,3].expand(rays_v.shape)
return torch.cat([rays_o.cpu(), rays_v.cpu(), color, mask[:, :1]], dim=-1).cuda() # batch_size, 10
def gen_rays_between(self, idx_0, idx_1, ratio, resolution_level=1):
"""
Interpolate pose between two cameras.
"""
l = resolution_level
tx = torch.linspace(0, self.W - 1, self.W // l)
ty = torch.linspace(0, self.H - 1, self.H // l)
pixels_x, pixels_y = torch.meshgrid(tx, ty)
p = torch.stack([pixels_x, pixels_y, torch.ones_like(pixels_y)], dim=-1) # W, H, 3
p = torch.matmul(self.intrinsics_all_inv[0, None, None, :3, :3], p[:, :, :, None]).squeeze() # W, H, 3
rays_v = p / torch.linalg.norm(p, ord=2, dim=-1, keepdim=True) # W, H, 3
trans = self.pose_all[idx_0, :3, 3] * (1.0 - ratio) + self.pose_all[idx_1, :3, 3] * ratio
pose_0 = self.pose_all[idx_0].detach().cpu().numpy()
pose_1 = self.pose_all[idx_1].detach().cpu().numpy()
pose_0 = np.linalg.inv(pose_0)
pose_1 = np.linalg.inv(pose_1)
rot_0 = pose_0[:3, :3]
rot_1 = pose_1[:3, :3]
rots = Rot.from_matrix(np.stack([rot_0, rot_1]))
key_times = [0, 1]
slerp = Slerp(key_times, rots)
rot = slerp(ratio)
pose = np.diag([1.0, 1.0, 1.0, 1.0])
pose = pose.astype(np.float32)
pose[:3, :3] = rot.as_matrix()
pose[:3, 3] = ((1.0 - ratio) * pose_0 + ratio * pose_1)[:3, 3]
pose = np.linalg.inv(pose)
rot = torch.from_numpy(pose[:3, :3]).cuda()
trans = torch.from_numpy(pose[:3, 3]).cuda()
rays_v = torch.matmul(rot[None, None, :3, :3], rays_v[:, :, :, None]).squeeze() # W, H, 3
rays_o = trans[None, None, :3].expand(rays_v.shape) # W, H, 3
return rays_o.transpose(0, 1), rays_v.transpose(0, 1)
def near_far_from_sphere(self, rays_o, rays_d):
a = torch.sum(rays_d**2, dim=-1, keepdim=True)
b = 2.0 * torch.sum(rays_o * rays_d, dim=-1, keepdim=True)
mid = 0.5 * (-b) / a
near = mid - 1.0
far = mid + 1.0
return near, far
## iamge_at ##
def image_at(self, idx, resolution_level):
if self.selected_img_idxes_list is not None:
img = cv.imread(self.images_lis[self.selected_img_idxes_list[idx]])
else:
img = cv.imread(self.images_lis[idx])
return (cv.resize(img, (self.W // resolution_level, self.H // resolution_level))).clip(0, 255)
if __name__=='__main__':
data_dir = "/data/datasets/genn/diffsim/diffredmax/save_res/goal_optimize_model_hand_sphere_test_obj_type_active_nfr_10_view_divide_0.5_n_views_7_three_planes_False_recon_dvgo_new_Nposes_7_routine_2"
data_dir = "/data/datasets/genn/diffsim/neus/public_data/hand_test"
data_dir = "/data2/datasets/diffsim/neus/public_data/hand_test_routine_2"
data_dir = "/data2/datasets/diffsim/neus/public_data/hand_test_routine_2_light_color"
filter_iamges_via_pixel_values(data_dir=data_dir)
|