File size: 17,752 Bytes
710e818
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import torch
import torch.nn.functional as F
import cv2 as cv
import numpy as np
import os
from glob import glob
from icecream import ic
from scipy.spatial.transform import Rotation as Rot
from scipy.spatial.transform import Slerp


# This function is borrowed from IDR: https://github.com/lioryariv/idr
def load_K_Rt_from_P(filename, P=None):
    if P is None:
        lines = open(filename).read().splitlines()
        if len(lines) == 4:
            lines = lines[1:]
        lines = [[x[0], x[1], x[2], x[3]] for x in (x.split(" ") for x in lines)]
        P = np.asarray(lines).astype(np.float32).squeeze()

    out = cv.decomposeProjectionMatrix(P)
    K = out[0]
    R = out[1]
    t = out[2]

    K = K / K[2, 2]
    intrinsics = np.eye(4)
    intrinsics[:3, :3] = K

    pose = np.eye(4, dtype=np.float32)
    pose[:3, :3] = R.transpose()
    pose[:3, 3] = (t[:3] / t[3])[:, 0]

    return intrinsics, pose

def filter_iamges_via_pixel_values(data_dir):
    images_lis = sorted(glob(os.path.join(data_dir, 'image/*.png'))) ## images lis ##
    n_images = len(images_lis)
    images_np = np.stack([cv.imread(im_name) for im_name in images_lis]) / 255.0
    print(f"images_np: {images_np.shape}")
    # nn_frames x res x res x 3 #
    images_np = 1. - images_np
    has_density_values = (np.sum(images_np, axis=-1) > 0.7).astype(np.float32)
    has_density_values = np.sum(np.sum(has_density_values, axis=-1), axis=-1)
    tot_res_nns = float(images_np.shape[1] * images_np.shape[2])
    has_density_ratio = has_density_values / tot_res_nns ### has density ratio and ratio # 
    print(f"has_density_values: {has_density_values.shape}")
    paried_has_density_ratio_list = [(i_fr, has_density_ratio[i_fr].item()) for i_fr in range(has_density_ratio.shape[0])]
    paried_has_density_ratio_list = sorted(paried_has_density_ratio_list, key=lambda ii: ii[1], reverse=True)
    mid_rnk_value = len(paried_has_density_ratio_list) // 4
    print(f"mid value of the density ratio")
    print(paried_has_density_ratio_list[mid_rnk_value])
    iamge_idx = paried_has_density_ratio_list[mid_rnk_value][0]
    print(f"iamge idx: {images_lis[iamge_idx]}")
    print(paried_has_density_ratio_list[:mid_rnk_value])
    tot_selected_img_idx_list = [ii[0] for ii in paried_has_density_ratio_list[:mid_rnk_value]]
    tot_selected_img_idx_list =sorted(tot_selected_img_idx_list)
    print(len(tot_selected_img_idx_list))
    # print(tot_selected_img_idx_list[54])
    print(tot_selected_img_idx_list)
    
    

class Dataset:
    def __init__(self, conf):
        super(Dataset, self).__init__()
        print('Load data: Begin')
        self.device = torch.device('cuda')
        self.conf = conf
        
        self.selected_img_idxes_list = [0, 1, 5, 6, 7, 8, 9, 13, 14, 15, 35, 36, 42, 43, 44, 48, 49, 50, 51, 55, 56, 57, 61, 62, 63, 69, 84, 90, 91, 92, 96, 97]
        # self.selected_img_idxes_list = [0, 1, 5, 6, 7, 8, 9, 12, 13, 14, 15, 20, 21, 22, 23, 26, 27, 28, 29, 35, 36, 37, 40, 41, 70, 71, 79, 82, 83, 84, 85, 92, 93, 96, 97, 98, 99, 105, 106, 107, 110, 111, 112, 113, 118, 119, 120, 121, 124, 125, 133, 134, 135, 139, 174, 175, 176, 177, 180, 188, 189, 190, 191, 194, 195]
        
        self.selected_img_idxes_list = [0, 1, 6, 7, 8, 9, 12, 13, 14, 15, 20, 21, 22, 23, 26, 27, 36, 40, 41, 70, 71, 78, 82, 83, 84, 85, 90, 91, 92, 93, 96, 97]
        
        self.selected_img_idxes_list = [0, 1, 6, 7, 8, 9, 12, 13, 14, 15, 20, 21, 22, 23, 26, 27, 36, 40, 41, 70, 71, 78, 82, 83, 84, 85, 90, 91, 92, 93, 96, 97, 98, 99, 104, 105, 106, 107, 110, 111, 112, 113, 118, 119, 120, 121, 124, 125, 134, 135, 139, 174, 175, 176, 177, 180, 181, 182, 183, 188, 189, 190, 191, 194, 195]
        
        self.selected_img_idxes_list = [0, 1, 6, 7, 8, 9, 12, 13, 14, 20, 21, 22, 23, 26, 27, 70, 78, 83, 84, 85, 91, 92, 93, 96, 97, 98, 99, 105, 106, 107, 110, 111, 112, 113, 119, 120, 121, 124, 125, 175, 176, 181, 182, 188, 189, 190, 191, 194, 195]
        # or the timestep to the dataset instance ## # selected img idxes list #
        self.selected_img_idxes = np.array(self.selected_img_idxes_list).astype(np.int32)
        
        
        
       

        self.data_dir = conf.get_string('data_dir')
        self.render_cameras_name = conf.get_string('render_cameras_name')
        self.object_cameras_name = conf.get_string('object_cameras_name')

        ## camera outside sphere ## 
        self.camera_outside_sphere = conf.get_bool('camera_outside_sphere', default=True)
        self.scale_mat_scale = conf.get_float('scale_mat_scale', default=1.1)

        camera_dict = np.load(os.path.join(self.data_dir, self.render_cameras_name))
        # camera_dict = np.load("/home/xueyi/diffsim/NeuS/public_data/dtu_scan24/cameras_sphere.npz")
        self.camera_dict = camera_dict # rendr camera dict #
        # render camera dict # # number of pixels in the views -> very thin geometry is not useful 
        self.images_lis = sorted(glob(os.path.join(self.data_dir, 'image/*.png')))
        
        # iamges_lis # and the images_lis and the images_lis #
        # self.images_lis = self.images_lis[:1] # totoal views and poses of the camera; # and select cameras for rendering #
        
        self.n_images = len(self.images_lis)
        self.images_np = np.stack([cv.imread(im_name) for im_name in self.images_lis]) / 256.0
        
        
        self.selected_img_idxes_list = list(range(self.images_np.shape[0]))
        self.selected_img_idxes = np.array(self.selected_img_idxes_list).astype(np.int32)
        
        self.images_np = self.images_np[self.selected_img_idxes] ## get selected iamges_np #
        
        ### if we deal with the backgound carefully ### ### get 
        self.images_np = np.stack([cv.imread(im_name) for im_name in self.images_lis]) / 255.0
        self.images_np = self.images_np[self.selected_img_idxes]
        self.images_np = 1. - self.images_np ### 
        
        
        self.masks_lis = sorted(glob(os.path.join(self.data_dir, 'mask/*.png')))
        
        # self.masks_lis = self.masks_lis[:1]
        
        try:
            self.masks_np = np.stack([cv.imread(im_name) for im_name in self.masks_lis]) / 256.0
            self.masks_np = self.masks_np[self.selected_img_idxes]
        except:
            self.masks_np = self.images_np.copy()


        
        


        # world_mat is a projection matrix from world to image
        self.world_mats_np = [camera_dict['world_mat_%d' % idx].astype(np.float32) for idx in range(self.n_images)]

        self.scale_mats_np = []

        # scale_mat: used for coordinate normalization, we assume the scene to render is inside a unit sphere at origin.
        self.scale_mats_np = [camera_dict['scale_mat_%d' % idx].astype(np.float32) for idx in range(self.n_images)]

        self.intrinsics_all = []
        self.pose_all = []

        # for idx, (scale_mat, world_mat) in enumerate(zip(self.scale_mats_np, self.world_mats_np)):
        for idx  in self.selected_img_idxes_list:
            scale_mat = self.scale_mats_np[idx]
            world_mat = self.world_mats_np[idx]
            
            if "hand" in self.data_dir:
                intrinsics = np.eye(4)
                fov = 512. / 2. # * 2
                res = 512.
                intrinsics[:3, :3] = np.array([
                    [fov, 0, 0.5* res], # res #
                    [0, fov, 0.5* res], # res #
                    [0, 0, 1]
                ], dtype=np.float32)
                pose = camera_dict['camera_mat_%d' % idx].astype(np.float32)
            else:
                P = world_mat @ scale_mat
                P = P[:3, :4]
                intrinsics, pose = load_K_Rt_from_P(None, P)
                
            self.intrinsics_all.append(torch.from_numpy(intrinsics).float())
            self.pose_all.append(torch.from_numpy(pose).float())

        ### images, masks, 
        self.images = torch.from_numpy(self.images_np.astype(np.float32)).cpu()  # [n_images, H, W, 3] #
        self.masks  = torch.from_numpy(self.masks_np.astype(np.float32)).cpu()   # [n_images, H, W, 3] #
        self.intrinsics_all = torch.stack(self.intrinsics_all).to(self.device)   # [n_images, 4, 4] # optimize sdf field # rigid model hand
        self.intrinsics_all_inv = torch.inverse(self.intrinsics_all)  # [n_images, 4, 4]
        self.focal = self.intrinsics_all[0][0, 0]
        self.pose_all = torch.stack(self.pose_all).to(self.device)  # [n_images, 4, 4]
        self.H, self.W = self.images.shape[1], self.images.shape[2]
        self.image_pixels = self.H * self.W

        object_bbox_min = np.array([-1.01, -1.01, -1.01, 1.0])
        object_bbox_max = np.array([ 1.01,  1.01,  1.01, 1.0])
        # Object scale mat: region of interest to **extract mesh**
        object_scale_mat = np.load(os.path.join(self.data_dir, self.object_cameras_name))['scale_mat_0']
        object_bbox_min = np.linalg.inv(self.scale_mats_np[0]) @ object_scale_mat @ object_bbox_min[:, None]
        object_bbox_max = np.linalg.inv(self.scale_mats_np[0]) @ object_scale_mat @ object_bbox_max[:, None]
        self.object_bbox_min = object_bbox_min[:3, 0]
        self.object_bbox_max = object_bbox_max[:3, 0]
        
        self.n_images = self.images.size(0)

        print('Load data: End')
        
    def get_rays(H, W, K, c2w, inverse_y, flip_x, flip_y, mode='center'):
        i, j = torch.meshgrid( # meshgrid #
            torch.linspace(0, W-1, W, device=c2w.device),
            torch.linspace(0, H-1, H, device=c2w.device))
        i = i.t().float()
        j = j.t().float()
        if mode == 'lefttop':
            pass
        elif mode == 'center':
            i, j = i+0.5, j+0.5
        elif mode == 'random':
            i = i+torch.rand_like(i)
            j = j+torch.rand_like(j)
        else:
            raise NotImplementedError

        if flip_x:
            i = i.flip((1,))
        if flip_y:
            j = j.flip((0,))
        if inverse_y:
            dirs = torch.stack([(i-K[0][2])/K[0][0], (j-K[1][2])/K[1][1], torch.ones_like(i)], -1)
        else:
            dirs = torch.stack([(i-K[0][2])/K[0][0], -(j-K[1][2])/K[1][1], -torch.ones_like(i)], -1)
        # Rotate ray directions from camera frame to the world frame
        rays_d = torch.sum(dirs[..., np.newaxis, :] * c2w[:3,:3], -1)  # dot product, equals to: [c2w.dot(dir) for dir in dirs]
        # Translate camera frame's origin to the world frame. It is the origin of all rays.
        rays_o = c2w[:3,3].expand(rays_d.shape)
        return rays_o, rays_d

    def gen_rays_at(self, img_idx, resolution_level=1):
        """
        Generate rays at world space from one camera.
        """
        l = resolution_level
        tx = torch.linspace(0, self.W - 1, self.W // l)
        ty = torch.linspace(0, self.H - 1, self.H // l)
        pixels_x, pixels_y = torch.meshgrid(tx, ty)
        
        ##### previous method #####
        # p = torch.stack([pixels_x, pixels_y, torch.ones_like(pixels_y)], dim=-1) # W, H, 3
        # # p = torch.stack([pixels_x, pixels_y, -1. * torch.ones_like(pixels_y)], dim=-1) # W, H, 3
        # p = torch.matmul(self.intrinsics_all_inv[img_idx, None, None, :3, :3], p[:, :, :, None]).squeeze()  # W, H, 3
        # rays_v = p / torch.linalg.norm(p, ord=2, dim=-1, keepdim=True)  # W, H, 3
        # rays_v = torch.matmul(self.pose_all[img_idx, None, None, :3, :3], rays_v[:, :, :, None]).squeeze()  # W, H, 3
        # rays_o = self.pose_all[img_idx, None, None, :3, 3].expand(rays_v.shape)  # W, H, 3
        ##### previous method #####
        
        fov = 512.; res = 512.
        K = np.array([
            [fov, 0, 0.5* res],
            [0, fov, 0.5* res],
            [0, 0, 1]
        ], dtype=np.float32)
        K = torch.from_numpy(K).float().cuda()
        
        
        # ### `center` mode ### #
        c2w = self.pose_all[img_idx]
        pixels_x, pixels_y = pixels_x+0.5, pixels_y+0.5
        
        dirs = torch.stack([(pixels_x-K[0][2])/K[0][0], -(pixels_y-K[1][2])/K[1][1], -torch.ones_like(pixels_x)], -1)
        rays_v = torch.sum(dirs[..., np.newaxis, :] * c2w[:3,:3], -1) 
        rays_o = c2w[:3,3].expand(rays_v.shape)
        # dirs = torch.stack([(i-K[0][2])/K[0][0], -(j-K[1][2])/K[1][1], -torch.ones_like(i)], -1)
        
        # p = torch.stack([pixels_x, pixels_y, torch.ones_like(pixels_y)], dim=-1) # W, H, 3
        # # p = torch.stack([pixels_x, pixels_y, -1. * torch.ones_like(pixels_y)], dim=-1) # W, H, 3
        # p = torch.matmul(self.intrinsics_all_inv[img_idx, None, None, :3, :3], p[:, :, :, None]).squeeze()  # W, H, 3
        # rays_v = p / torch.linalg.norm(p, ord=2, dim=-1, keepdim=True)  # W, H, 3
        # rays_v = torch.matmul(self.pose_all[img_idx, None, None, :3, :3], rays_v[:, :, :, None]).squeeze()  # W, H, 3
        # rays_o = self.pose_all[img_idx, None, None, :3, 3].expand(rays_v.shape)  # W, H, 3
        return rays_o.transpose(0, 1), rays_v.transpose(0, 1)

    def gen_random_rays_at(self, img_idx, batch_size):
        """
        Generate random rays at world space from one camera.
        """
        pixels_x = torch.randint(low=0, high=self.W, size=[batch_size])
        pixels_y = torch.randint(low=0, high=self.H, size=[batch_size])
        color = self.images[img_idx][(pixels_y, pixels_x)]    # batch_size, 3
        
        mask = self.masks[img_idx][(pixels_y, pixels_x)]      # batch_size, 3
        
        
        ##### previous method #####
        # p = torch.stack([pixels_x, pixels_y, torch.ones_like(pixels_y)], dim=-1).float()  # batch_size, 3
        # # p = torch.stack([pixels_x, pixels_y, -1. * torch.ones_like(pixels_y)], dim=-1).float()  # batch_size, 3
        # p = torch.matmul(self.intrinsics_all_inv[img_idx, None, :3, :3], p[:, :, None]).squeeze() # batch_size, 3
        # rays_v = p / torch.linalg.norm(p, ord=2, dim=-1, keepdim=True)    # batch_size, 3
        # rays_v = torch.matmul(self.pose_all[img_idx, None, :3, :3], rays_v[:, :, None]).squeeze()  # batch_size, 3
        # rays_o = self.pose_all[img_idx, None, :3, 3].expand(rays_v.shape) # batch_size, 3
        ##### previous method #####
        
        fov = 512.; res = 512.
        K = np.array([
            [fov, 0, 0.5* res],
            [0, fov, 0.5* res],
            [0, 0, 1]
        ], dtype=np.float32)
        K = torch.from_numpy(K).float().cuda()
        
        
        # ### `center` mode ### #
        c2w = self.pose_all[img_idx]
        pixels_x, pixels_y = pixels_x+0.5, pixels_y+0.5
        
        dirs = torch.stack([(pixels_x-K[0][2])/K[0][0], -(pixels_y-K[1][2])/K[1][1], -torch.ones_like(pixels_x)], -1)
        rays_v = torch.sum(dirs[..., np.newaxis, :] * c2w[:3,:3], -1) 
        rays_o = c2w[:3,3].expand(rays_v.shape)
        
        
        return torch.cat([rays_o.cpu(), rays_v.cpu(), color, mask[:, :1]], dim=-1).cuda()    # batch_size, 10

    def gen_rays_between(self, idx_0, idx_1, ratio, resolution_level=1):
        """
        Interpolate pose between two cameras.
        """
        l = resolution_level
        tx = torch.linspace(0, self.W - 1, self.W // l)
        ty = torch.linspace(0, self.H - 1, self.H // l)
        pixels_x, pixels_y = torch.meshgrid(tx, ty)
        p = torch.stack([pixels_x, pixels_y, torch.ones_like(pixels_y)], dim=-1)  # W, H, 3
        p = torch.matmul(self.intrinsics_all_inv[0, None, None, :3, :3], p[:, :, :, None]).squeeze()  # W, H, 3
        rays_v = p / torch.linalg.norm(p, ord=2, dim=-1, keepdim=True)  # W, H, 3
        trans = self.pose_all[idx_0, :3, 3] * (1.0 - ratio) + self.pose_all[idx_1, :3, 3] * ratio
        pose_0 = self.pose_all[idx_0].detach().cpu().numpy()
        pose_1 = self.pose_all[idx_1].detach().cpu().numpy()
        pose_0 = np.linalg.inv(pose_0)
        pose_1 = np.linalg.inv(pose_1)
        rot_0 = pose_0[:3, :3]
        rot_1 = pose_1[:3, :3]
        rots = Rot.from_matrix(np.stack([rot_0, rot_1]))
        key_times = [0, 1]
        slerp = Slerp(key_times, rots)
        rot = slerp(ratio)
        pose = np.diag([1.0, 1.0, 1.0, 1.0])
        pose = pose.astype(np.float32)
        pose[:3, :3] = rot.as_matrix()
        pose[:3, 3] = ((1.0 - ratio) * pose_0 + ratio * pose_1)[:3, 3]
        pose = np.linalg.inv(pose)
        rot = torch.from_numpy(pose[:3, :3]).cuda()
        trans = torch.from_numpy(pose[:3, 3]).cuda()
        rays_v = torch.matmul(rot[None, None, :3, :3], rays_v[:, :, :, None]).squeeze()  # W, H, 3
        rays_o = trans[None, None, :3].expand(rays_v.shape)  # W, H, 3
        return rays_o.transpose(0, 1), rays_v.transpose(0, 1)

    def near_far_from_sphere(self, rays_o, rays_d):
        a = torch.sum(rays_d**2, dim=-1, keepdim=True)
        b = 2.0 * torch.sum(rays_o * rays_d, dim=-1, keepdim=True)
        mid = 0.5 * (-b) / a
        near = mid - 1.0
        far = mid + 1.0
        return near, far

    ## iamge_at ##
    def image_at(self, idx, resolution_level):
        if self.selected_img_idxes_list is not None:
            img = cv.imread(self.images_lis[self.selected_img_idxes_list[idx]])
        else:
            img = cv.imread(self.images_lis[idx])
        return (cv.resize(img, (self.W // resolution_level, self.H // resolution_level))).clip(0, 255)


if __name__=='__main__':
    data_dir = "/data/datasets/genn/diffsim/diffredmax/save_res/goal_optimize_model_hand_sphere_test_obj_type_active_nfr_10_view_divide_0.5_n_views_7_three_planes_False_recon_dvgo_new_Nposes_7_routine_2"
    data_dir = "/data/datasets/genn/diffsim/neus/public_data/hand_test"
    data_dir = "/data2/datasets/diffsim/neus/public_data/hand_test_routine_2"
    data_dir = "/data2/datasets/diffsim/neus/public_data/hand_test_routine_2_light_color"
    filter_iamges_via_pixel_values(data_dir=data_dir)