Spaces:
Running
Running
File size: 28,689 Bytes
710e818 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import logging
import mcubes
from icecream import ic
import os
import trimesh
from pysdf import SDF
from uni_rep.rep_3d.dmtet import marching_tets_tetmesh, create_tetmesh_variables
def create_mt_variable(device):
triangle_table = torch.tensor(
[
[-1, -1, -1, -1, -1, -1],
[1, 0, 2, -1, -1, -1],
[4, 0, 3, -1, -1, -1],
[1, 4, 2, 1, 3, 4],
[3, 1, 5, -1, -1, -1],
[2, 3, 0, 2, 5, 3],
[1, 4, 0, 1, 5, 4],
[4, 2, 5, -1, -1, -1],
[4, 5, 2, -1, -1, -1],
[4, 1, 0, 4, 5, 1],
[3, 2, 0, 3, 5, 2],
[1, 3, 5, -1, -1, -1],
[4, 1, 2, 4, 3, 1],
[3, 0, 4, -1, -1, -1],
[2, 0, 1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1]
], dtype=torch.long, device=device)
num_triangles_table = torch.tensor([0, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 0], dtype=torch.long, device=device)
base_tet_edges = torch.tensor([0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 2, 3], dtype=torch.long, device=device)
v_id = torch.pow(2, torch.arange(4, dtype=torch.long, device=device))
return triangle_table, num_triangles_table, base_tet_edges, v_id
def extract_fields_from_tets(bound_min, bound_max, resolution, query_func):
# load tet via resolution #
# scale them via bounds #
# extract the geometry #
# /home/xueyi/gen/DeepMetaHandles/data/tets/100_compress.npz # strange #
device = bound_min.device
# if resolution in [64, 70, 80, 90, 100]:
# tet_fn = f"/home/xueyi/gen/DeepMetaHandles/data/tets/{resolution}_compress.npz"
# else:
tet_fn = f"/home/xueyi/gen/DeepMetaHandles/data/tets/{100}_compress.npz"
tets = np.load(tet_fn)
verts = torch.from_numpy(tets['vertices']).float().to(device) # verts positions
indices = torch.from_numpy(tets['tets']).long().to(device) # .to(self.device)
# split #
# verts; verts; #
minn_verts, _ = torch.min(verts, dim=0)
maxx_verts, _ = torch.max(verts, dim=0) # (3, ) # exporting the
# scale_verts = maxx_verts - minn_verts
scale_bounds = bound_max - bound_min # scale bounds #
### scale the vertices ###
scaled_verts = (verts - minn_verts.unsqueeze(0)) / (maxx_verts - minn_verts).unsqueeze(0) ### the maxx and minn verts scales ###
# scaled_verts = (verts - minn_verts.unsqueeze(0)) / (maxx_verts - minn_verts).unsqueeze(0) ### the maxx and minn verts scales ###
scaled_verts = scaled_verts * 2. - 1. # init the sdf filed viathe tet mesh vertices and the sdf values ##
# scaled_verts = (scaled_verts * scale_bounds.unsqueeze(0)) + bound_min.unsqueeze(0) ## the scaled verts ###
# scaled_verts = scaled_verts - scale_bounds.unsqueeze(0) / 2. #
# scaled_verts = scaled_verts - bound_min.unsqueeze(0) - scale_bounds.unsqueeze(0) / 2.
sdf_values = []
N = 64
query_bundles = N ** 3 ### N^3
query_NNs = scaled_verts.size(0) // query_bundles
if query_NNs * query_bundles < scaled_verts.size(0):
query_NNs += 1
for i_query in range(query_NNs):
cur_bundle_st = i_query * query_bundles
cur_bundle_ed = (i_query + 1) * query_bundles
cur_bundle_ed = min(cur_bundle_ed, scaled_verts.size(0))
cur_query_pts = scaled_verts[cur_bundle_st: cur_bundle_ed]
cur_query_vals = query_func(cur_query_pts)
sdf_values.append(cur_query_vals)
sdf_values = torch.cat(sdf_values, dim=0)
# print(f"queryed sdf values: {sdf_values.size()}") #
GT_sdf_values = np.load("/home/xueyi/diffsim/DiffHand/assets/hand/100_sdf_values.npy", allow_pickle=True)
GT_sdf_values = torch.from_numpy(GT_sdf_values).float().to(device)
# intrinsic, tet values, pts values, sdf network #
triangle_table, num_triangles_table, base_tet_edges, v_id = create_mt_variable(device)
tet_table, num_tets_table = create_tetmesh_variables(device)
sdf_values = sdf_values.squeeze(-1) # how the rendering #
# print(f"GT_sdf_values: {GT_sdf_values.size()}, sdf_values: {sdf_values.size()}, scaled_verts: {scaled_verts.size()}")
# print(f"scaled_verts: {scaled_verts.size()}, ")
# pos_nx3, sdf_n, tet_fx4, triangle_table, num_triangles_table, base_tet_edges, v_id,
# return_tet_mesh=False, ori_v=None, num_tets_table=None, tet_table=None):
# marching_tets_tetmesh ##
verts, faces, tet_verts, tets = marching_tets_tetmesh(scaled_verts, sdf_values, indices, triangle_table, num_triangles_table, base_tet_edges, v_id, return_tet_mesh=True, ori_v=scaled_verts, num_tets_table=num_tets_table, tet_table=tet_table)
### use the GT sdf values for the marching tets ###
GT_verts, GT_faces, GT_tet_verts, GT_tets = marching_tets_tetmesh(scaled_verts, GT_sdf_values, indices, triangle_table, num_triangles_table, base_tet_edges, v_id, return_tet_mesh=True, ori_v=scaled_verts, num_tets_table=num_tets_table, tet_table=tet_table)
# print(f"After tet marching with verts: {verts.size()}, faces: {faces.size()}")
return verts, faces, sdf_values, GT_verts, GT_faces # verts, faces #
def extract_fields(bound_min, bound_max, resolution, query_func):
N = 64
X = torch.linspace(bound_min[0], bound_max[0], resolution).split(N)
Y = torch.linspace(bound_min[1], bound_max[1], resolution).split(N)
Z = torch.linspace(bound_min[2], bound_max[2], resolution).split(N)
u = np.zeros([resolution, resolution, resolution], dtype=np.float32)
with torch.no_grad():
for xi, xs in enumerate(X):
for yi, ys in enumerate(Y):
for zi, zs in enumerate(Z):
xx, yy, zz = torch.meshgrid(xs, ys, zs)
pts = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1)
val = query_func(pts).reshape(len(xs), len(ys), len(zs)).detach().cpu().numpy()
u[xi * N: xi * N + len(xs), yi * N: yi * N + len(ys), zi * N: zi * N + len(zs)] = val
# should save u here #
# save_u_path = os.path.join("/data2/datasets/diffsim/neus/exp/hand_test/womask_sphere_reverse_value/other_saved", "sdf_values.npy")
# np.save(save_u_path, u)
# print(f"u saved to {save_u_path}")
return u
def extract_geometry(bound_min, bound_max, resolution, threshold, query_func):
print('threshold: {}'.format(threshold))
## using maching cubes ###
u = extract_fields(bound_min, bound_max, resolution, query_func)
vertices, triangles = mcubes.marching_cubes(u, threshold) # grid sdf and marching cubes #
b_max_np = bound_max.detach().cpu().numpy()
b_min_np = bound_min.detach().cpu().numpy()
vertices = vertices / (resolution - 1.0) * (b_max_np - b_min_np)[None, :] + b_min_np[None, :]
### using maching cubes ###
### using marching tets ###
# vertices, triangles = extract_fields_from_tets(bound_min, bound_max, resolution, query_func)
# vertices = vertices.detach().cpu().numpy()
# triangles = triangles.detach().cpu().numpy()
### using marching tets ###
# b_max_np = bound_max.detach().cpu().numpy()
# b_min_np = bound_min.detach().cpu().numpy()
# vertices = vertices / (resolution - 1.0) * (b_max_np - b_min_np)[None, :] + b_min_np[None, :]
return vertices, triangles
def extract_geometry_tets(bound_min, bound_max, resolution, threshold, query_func):
# print('threshold: {}'.format(threshold))
### using maching cubes ###
# u = extract_fields(bound_min, bound_max, resolution, query_func)
# vertices, triangles = mcubes.marching_cubes(u, threshold) # grid sdf and marching cubes #
# b_max_np = bound_max.detach().cpu().numpy()
# b_min_np = bound_min.detach().cpu().numpy()
# vertices = vertices / (resolution - 1.0) * (b_max_np - b_min_np)[None, :] + b_min_np[None, :]
### using maching cubes ###
##
### using marching tets ### fiels from tets ##
vertices, triangles, tet_sdf_values, GT_verts, GT_faces = extract_fields_from_tets(bound_min, bound_max, resolution, query_func)
# vertices = vertices.detach().cpu().numpy()
# triangles = triangles.detach().cpu().numpy()
### using marching tets ###
# b_max_np = bound_max.detach().cpu().numpy()
# b_min_np = bound_min.detach().cpu().numpy()
#
# vertices = vertices / (resolution - 1.0) * (b_max_np - b_min_np)[None, :] + b_min_np[None, :]
return vertices, triangles, tet_sdf_values, GT_verts, GT_faces
def sample_pdf(bins, weights, n_samples, det=False):
# This implementation is from NeRF
# Get pdf
weights = weights + 1e-5 # prevent nans
pdf = weights / torch.sum(weights, -1, keepdim=True)
cdf = torch.cumsum(pdf, -1)
cdf = torch.cat([torch.zeros_like(cdf[..., :1]), cdf], -1)
# Take uniform samples
if det:
u = torch.linspace(0. + 0.5 / n_samples, 1. - 0.5 / n_samples, steps=n_samples)
u = u.expand(list(cdf.shape[:-1]) + [n_samples])
else:
u = torch.rand(list(cdf.shape[:-1]) + [n_samples])
# Invert CDF # invert cdf #
u = u.contiguous()
inds = torch.searchsorted(cdf, u, right=True)
below = torch.max(torch.zeros_like(inds - 1), inds - 1)
above = torch.min((cdf.shape[-1] - 1) * torch.ones_like(inds), inds)
inds_g = torch.stack([below, above], -1) # (batch, N_samples, 2)
matched_shape = [inds_g.shape[0], inds_g.shape[1], cdf.shape[-1]]
cdf_g = torch.gather(cdf.unsqueeze(1).expand(matched_shape), 2, inds_g)
bins_g = torch.gather(bins.unsqueeze(1).expand(matched_shape), 2, inds_g)
denom = (cdf_g[..., 1] - cdf_g[..., 0])
denom = torch.where(denom < 1e-5, torch.ones_like(denom), denom)
t = (u - cdf_g[..., 0]) / denom
samples = bins_g[..., 0] + t * (bins_g[..., 1] - bins_g[..., 0])
return samples
def load_GT_vertices(GT_meshes_folder):
tot_meshes_fns = os.listdir(GT_meshes_folder)
tot_meshes_fns = [fn for fn in tot_meshes_fns if fn.endswith(".obj")]
tot_mesh_verts = []
tot_mesh_faces = []
n_tot_verts = 0
for fn in tot_meshes_fns:
cur_mesh_fn = os.path.join(GT_meshes_folder, fn)
obj_mesh = trimesh.load(cur_mesh_fn, process=False)
# obj_mesh.remove_degenerate_faces(height=1e-06)
verts_obj = np.array(obj_mesh.vertices)
faces_obj = np.array(obj_mesh.faces)
tot_mesh_verts.append(verts_obj)
tot_mesh_faces.append(faces_obj + n_tot_verts)
n_tot_verts += verts_obj.shape[0]
# tot_mesh_faces.append(faces_obj)
tot_mesh_verts = np.concatenate(tot_mesh_verts, axis=0)
tot_mesh_faces = np.concatenate(tot_mesh_faces, axis=0)
return tot_mesh_verts, tot_mesh_faces
class NeuSRenderer:
def __init__(self,
nerf,
sdf_network,
deviation_network,
color_network,
n_samples,
n_importance,
n_outside,
up_sample_steps,
perturb):
self.nerf = nerf
self.sdf_network = sdf_network
self.deviation_network = deviation_network
self.color_network = color_network
self.n_samples = n_samples
self.n_importance = n_importance
self.n_outside = n_outside
self.up_sample_steps = up_sample_steps
self.perturb = perturb
GT_meshes_folder = "/home/xueyi/diffsim/DiffHand/assets/hand"
self.mesh_vertices, self.mesh_faces = load_GT_vertices(GT_meshes_folder=GT_meshes_folder)
maxx_pts = 25.
minn_pts = -15.
self.mesh_vertices = (self.mesh_vertices - minn_pts) / (maxx_pts - minn_pts)
f = SDF(self.mesh_vertices, self.mesh_faces)
self.gt_sdf = f ## a unite sphere or box
self.minn_pts = 0
self.maxx_pts = 1.
# self.minn_pts = -1.5
# self.maxx_pts = 1.5
self.bkg_pts = ... # TODO: the bkg pts
self.cur_fr_bkg_pts_defs = ... # TODO: set the cur_bkg_pts_defs for each frame #
self.dist_interp_thres = ... # TODO
# get the pts and render the pts #
# pts and the rendering pts #
def deform_pts(self, pts):
# pts: nn_batch x nn_samples x 3
nnb, nns = pts.size(0), pts.size(1)
pts_exp = pts.contiguous().view(nnb * nns, -1).contiguous()
dist_pts_to_bkg_pts = torch.sum(
(pts_exp.unsqueeze(1) - self.bkg_pts.unsqueeze(0)) ** 2, dim=-1 ## nn_pts_exp x nn_bkg_pts
)
def render_core_outside(self, rays_o, rays_d, z_vals, sample_dist, nerf, background_rgb=None):
"""
Render background
"""
batch_size, n_samples = z_vals.shape
# Section length
dists = z_vals[..., 1:] - z_vals[..., :-1]
dists = torch.cat([dists, torch.Tensor([sample_dist]).expand(dists[..., :1].shape)], -1)
mid_z_vals = z_vals + dists * 0.5
# Section midpoints #
pts = rays_o[:, None, :] + rays_d[:, None, :] * mid_z_vals[..., :, None] # batch_size, n_samples, 3 #
# pts = pts.flip((-1,)) * 2 - 1
pts = pts * 2 - 1
dis_to_center = torch.linalg.norm(pts, ord=2, dim=-1, keepdim=True).clip(1.0, 1e10)
pts = torch.cat([pts / dis_to_center, 1.0 / dis_to_center], dim=-1) # batch_size, n_samples, 4 #
dirs = rays_d[:, None, :].expand(batch_size, n_samples, 3)
pts = pts.reshape(-1, 3 + int(self.n_outside > 0))
dirs = dirs.reshape(-1, 3)
density, sampled_color = nerf(pts, dirs)
sampled_color = torch.sigmoid(sampled_color)
alpha = 1.0 - torch.exp(-F.softplus(density.reshape(batch_size, n_samples)) * dists)
alpha = alpha.reshape(batch_size, n_samples)
weights = alpha * torch.cumprod(torch.cat([torch.ones([batch_size, 1]), 1. - alpha + 1e-7], -1), -1)[:, :-1]
sampled_color = sampled_color.reshape(batch_size, n_samples, 3)
color = (weights[:, :, None] * sampled_color).sum(dim=1)
if background_rgb is not None:
color = color + background_rgb * (1.0 - weights.sum(dim=-1, keepdim=True))
return {
'color': color,
'sampled_color': sampled_color,
'alpha': alpha,
'weights': weights,
}
def up_sample(self, rays_o, rays_d, z_vals, sdf, n_importance, inv_s):
"""
Up sampling give a fixed inv_s
"""
batch_size, n_samples = z_vals.shape
pts = rays_o[:, None, :] + rays_d[:, None, :] * z_vals[..., :, None] # n_rays, n_samples, 3
# pts = pts.flip((-1,)) * 2 - 1
pts = pts * 2 - 1
radius = torch.linalg.norm(pts, ord=2, dim=-1, keepdim=False)
inside_sphere = (radius[:, :-1] < 1.0) | (radius[:, 1:] < 1.0)
sdf = sdf.reshape(batch_size, n_samples)
prev_sdf, next_sdf = sdf[:, :-1], sdf[:, 1:]
prev_z_vals, next_z_vals = z_vals[:, :-1], z_vals[:, 1:]
mid_sdf = (prev_sdf + next_sdf) * 0.5
cos_val = (next_sdf - prev_sdf) / (next_z_vals - prev_z_vals + 1e-5)
# ----------------------------------------------------------------------------------------------------------
# Use min value of [ cos, prev_cos ]
# Though it makes the sampling (not rendering) a little bit biased, this strategy can make the sampling more
# robust when meeting situations like below:
#
# SDF
# ^
# |\ -----x----...
# | \ /
# | x x
# |---\----/-------------> 0 level
# | \ /
# | \/
# |
# ----------------------------------------------------------------------------------------------------------
prev_cos_val = torch.cat([torch.zeros([batch_size, 1]), cos_val[:, :-1]], dim=-1)
cos_val = torch.stack([prev_cos_val, cos_val], dim=-1)
cos_val, _ = torch.min(cos_val, dim=-1, keepdim=False)
cos_val = cos_val.clip(-1e3, 0.0) * inside_sphere
dist = (next_z_vals - prev_z_vals)
prev_esti_sdf = mid_sdf - cos_val * dist * 0.5
next_esti_sdf = mid_sdf + cos_val * dist * 0.5
prev_cdf = torch.sigmoid(prev_esti_sdf * inv_s)
next_cdf = torch.sigmoid(next_esti_sdf * inv_s)
alpha = (prev_cdf - next_cdf + 1e-5) / (prev_cdf + 1e-5)
weights = alpha * torch.cumprod(
torch.cat([torch.ones([batch_size, 1]), 1. - alpha + 1e-7], -1), -1)[:, :-1]
z_samples = sample_pdf(z_vals, weights, n_importance, det=True).detach()
return z_samples
def cat_z_vals(self, rays_o, rays_d, z_vals, new_z_vals, sdf, last=False):
batch_size, n_samples = z_vals.shape
_, n_importance = new_z_vals.shape
pts = rays_o[:, None, :] + rays_d[:, None, :] * new_z_vals[..., :, None]
# pts = pts.flip((-1,)) * 2 - 1
pts = pts * 2 - 1
z_vals = torch.cat([z_vals, new_z_vals], dim=-1)
z_vals, index = torch.sort(z_vals, dim=-1)
if not last:
new_sdf = self.sdf_network.sdf(pts.reshape(-1, 3)).reshape(batch_size, n_importance)
sdf = torch.cat([sdf, new_sdf], dim=-1)
xx = torch.arange(batch_size)[:, None].expand(batch_size, n_samples + n_importance).reshape(-1)
index = index.reshape(-1)
sdf = sdf[(xx, index)].reshape(batch_size, n_samples + n_importance)
return z_vals, sdf
def render_core(self,
rays_o,
rays_d,
z_vals,
sample_dist,
sdf_network,
deviation_network,
color_network,
background_alpha=None,
background_sampled_color=None,
background_rgb=None,
cos_anneal_ratio=0.0):
batch_size, n_samples = z_vals.shape
# Section length
dists = z_vals[..., 1:] - z_vals[..., :-1]
dists = torch.cat([dists, torch.Tensor([sample_dist]).expand(dists[..., :1].shape)], -1)
mid_z_vals = z_vals + dists * 0.5 # z_vals and dists * 0.5 #
# Section midpoints
pts = rays_o[:, None, :] + rays_d[:, None, :] * mid_z_vals[..., :, None] # n_rays, n_samples, 3
dirs = rays_d[:, None, :].expand(pts.shape)
pts = pts.reshape(-1, 3) # pts, nn_ou
dirs = dirs.reshape(-1, 3)
pts = (pts - self.minn_pts) / (self.maxx_pts - self.minn_pts)
# pts = pts.flip((-1,)) * 2 - 1 #
pts = pts * 2 - 1
sdf_nn_output = sdf_network(pts)
sdf = sdf_nn_output[:, :1]
feature_vector = sdf_nn_output[:, 1:]
gradients = sdf_network.gradient(pts).squeeze()
sampled_color = color_network(pts, gradients, dirs, feature_vector).reshape(batch_size, n_samples, 3)
# deviation network #
inv_s = deviation_network(torch.zeros([1, 3]))[:, :1].clip(1e-6, 1e6) # Single parameter
inv_s = inv_s.expand(batch_size * n_samples, 1)
true_cos = (dirs * gradients).sum(-1, keepdim=True)
# "cos_anneal_ratio" grows from 0 to 1 in the beginning training iterations. The anneal strategy below makes
# the cos value "not dead" at the beginning training iterations, for better convergence.
iter_cos = -(F.relu(-true_cos * 0.5 + 0.5) * (1.0 - cos_anneal_ratio) +
F.relu(-true_cos) * cos_anneal_ratio) # always non-positive
# Estimate signed distances at section points
estimated_next_sdf = sdf + iter_cos * dists.reshape(-1, 1) * 0.5
estimated_prev_sdf = sdf - iter_cos * dists.reshape(-1, 1) * 0.5
prev_cdf = torch.sigmoid(estimated_prev_sdf * inv_s)
next_cdf = torch.sigmoid(estimated_next_sdf * inv_s)
p = prev_cdf - next_cdf
c = prev_cdf
alpha = ((p + 1e-5) / (c + 1e-5)).reshape(batch_size, n_samples).clip(0.0, 1.0)
pts_norm = torch.linalg.norm(pts, ord=2, dim=-1, keepdim=True).reshape(batch_size, n_samples)
inside_sphere = (pts_norm < 1.0).float().detach()
relax_inside_sphere = (pts_norm < 1.2).float().detach()
# Render with background
if background_alpha is not None:
alpha = alpha * inside_sphere + background_alpha[:, :n_samples] * (1.0 - inside_sphere)
alpha = torch.cat([alpha, background_alpha[:, n_samples:]], dim=-1)
sampled_color = sampled_color * inside_sphere[:, :, None] +\
background_sampled_color[:, :n_samples] * (1.0 - inside_sphere)[:, :, None]
sampled_color = torch.cat([sampled_color, background_sampled_color[:, n_samples:]], dim=1)
weights = alpha * torch.cumprod(torch.cat([torch.ones([batch_size, 1]), 1. - alpha + 1e-7], -1), -1)[:, :-1]
weights_sum = weights.sum(dim=-1, keepdim=True)
color = (sampled_color * weights[:, :, None]).sum(dim=1)
if background_rgb is not None: # Fixed background, usually black
color = color + background_rgb * (1.0 - weights_sum)
# Eikonal loss
gradient_error = (torch.linalg.norm(gradients.reshape(batch_size, n_samples, 3), ord=2,
dim=-1) - 1.0) ** 2
gradient_error = (relax_inside_sphere * gradient_error).sum() / (relax_inside_sphere.sum() + 1e-5)
return {
'color': color,
'sdf': sdf,
'dists': dists,
'gradients': gradients.reshape(batch_size, n_samples, 3),
's_val': 1.0 / inv_s,
'mid_z_vals': mid_z_vals,
'weights': weights,
'cdf': c.reshape(batch_size, n_samples),
'gradient_error': gradient_error,
'inside_sphere': inside_sphere
}
def render(self, rays_o, rays_d, near, far, perturb_overwrite=-1, background_rgb=None, cos_anneal_ratio=0.0, use_gt_sdf=False):
batch_size = len(rays_o)
sample_dist = 2.0 / self.n_samples # Assuming the region of interest is a unit sphere
z_vals = torch.linspace(0.0, 1.0, self.n_samples)
z_vals = near + (far - near) * z_vals[None, :]
z_vals_outside = None
if self.n_outside > 0:
z_vals_outside = torch.linspace(1e-3, 1.0 - 1.0 / (self.n_outside + 1.0), self.n_outside)
n_samples = self.n_samples
perturb = self.perturb
if perturb_overwrite >= 0:
perturb = perturb_overwrite
if perturb > 0:
t_rand = (torch.rand([batch_size, 1]) - 0.5)
z_vals = z_vals + t_rand * 2.0 / self.n_samples
if self.n_outside > 0:
mids = .5 * (z_vals_outside[..., 1:] + z_vals_outside[..., :-1])
upper = torch.cat([mids, z_vals_outside[..., -1:]], -1)
lower = torch.cat([z_vals_outside[..., :1], mids], -1)
t_rand = torch.rand([batch_size, z_vals_outside.shape[-1]])
z_vals_outside = lower[None, :] + (upper - lower)[None, :] * t_rand
if self.n_outside > 0:
z_vals_outside = far / torch.flip(z_vals_outside, dims=[-1]) + 1.0 / self.n_samples
background_alpha = None
background_sampled_color = None
# Up sample
if self.n_importance > 0:
with torch.no_grad():
pts = rays_o[:, None, :] + rays_d[:, None, :] * z_vals[..., :, None]
pts = (pts - self.minn_pts) / (self.maxx_pts - self.minn_pts)
# sdf = self.sdf_network.sdf(pts.reshape(-1, 3)).reshape(batch_size, self.n_samples)
# gt_sdf #
#
# pts = ((pts - xyz_min) / (xyz_max - xyz_min)).flip((-1,)) * 2 - 1
# pts = pts.flip((-1,)) * 2 - 1
pts = pts * 2 - 1
pts_exp = pts.reshape(-1, 3)
# minn_pts, _ = torch.min(pts_exp, dim=0)
# maxx_pts, _ = torch.max(pts_exp, dim=0)
# print(f"minn_pts: {minn_pts}, maxx_pts: {maxx_pts}")
# pts_to_near = pts - near.unsqueeze(1)
# maxx_pts = 1.5; minn_pts = -1.5
# # maxx_pts = 3; minn_pts = -3
# # maxx_pts = 1; minn_pts = -1
# pts_exp = (pts_exp - minn_pts) / (maxx_pts - minn_pts)
## render and iamges ####
if use_gt_sdf:
### use the GT sdf field ####
# print(f"Using gt sdf :")
sdf = self.gt_sdf(pts_exp.reshape(-1, 3).detach().cpu().numpy())
sdf = torch.from_numpy(sdf).float().cuda()
sdf = sdf.reshape(batch_size, self.n_samples)
### use the GT sdf field ####
else:
#### use the optimized sdf field ####
sdf = self.sdf_network.sdf(pts_exp).reshape(batch_size, self.n_samples)
#### use the optimized sdf field ####
for i in range(self.up_sample_steps):
new_z_vals = self.up_sample(rays_o,
rays_d,
z_vals,
sdf,
self.n_importance // self.up_sample_steps,
64 * 2**i)
z_vals, sdf = self.cat_z_vals(rays_o,
rays_d,
z_vals,
new_z_vals,
sdf,
last=(i + 1 == self.up_sample_steps))
n_samples = self.n_samples + self.n_importance
# Background model
if self.n_outside > 0:
z_vals_feed = torch.cat([z_vals, z_vals_outside], dim=-1)
z_vals_feed, _ = torch.sort(z_vals_feed, dim=-1)
ret_outside = self.render_core_outside(rays_o, rays_d, z_vals_feed, sample_dist, self.nerf)
background_sampled_color = ret_outside['sampled_color']
background_alpha = ret_outside['alpha']
# Render core
ret_fine = self.render_core(rays_o, #
rays_d,
z_vals,
sample_dist,
self.sdf_network,
self.deviation_network,
self.color_network,
background_rgb=background_rgb,
background_alpha=background_alpha,
background_sampled_color=background_sampled_color,
cos_anneal_ratio=cos_anneal_ratio)
color_fine = ret_fine['color']
weights = ret_fine['weights']
weights_sum = weights.sum(dim=-1, keepdim=True)
gradients = ret_fine['gradients']
s_val = ret_fine['s_val'].reshape(batch_size, n_samples).mean(dim=-1, keepdim=True)
return {
'color_fine': color_fine,
's_val': s_val,
'cdf_fine': ret_fine['cdf'],
'weight_sum': weights_sum,
'weight_max': torch.max(weights, dim=-1, keepdim=True)[0],
'gradients': gradients,
'weights': weights,
'gradient_error': ret_fine['gradient_error'],
'inside_sphere': ret_fine['inside_sphere']
}
def extract_geometry(self, bound_min, bound_max, resolution, threshold=0.0):
return extract_geometry(bound_min, # extract geometry #
bound_max,
resolution=resolution,
threshold=threshold,
query_func=lambda pts: -self.sdf_network.sdf(pts))
def extract_geometry_tets(self, bound_min, bound_max, resolution, threshold=0.0):
return extract_geometry_tets(bound_min, # extract geometry #
bound_max,
resolution=resolution,
threshold=threshold,
query_func=lambda pts: -self.sdf_network.sdf(pts))
|