File size: 28,689 Bytes
710e818
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import logging
import mcubes
from icecream import ic
import os

import trimesh
from pysdf import SDF

from uni_rep.rep_3d.dmtet import marching_tets_tetmesh, create_tetmesh_variables

def create_mt_variable(device):
    triangle_table = torch.tensor(
        [
            [-1, -1, -1, -1, -1, -1],
            [1, 0, 2, -1, -1, -1],
            [4, 0, 3, -1, -1, -1],
            [1, 4, 2, 1, 3, 4],
            [3, 1, 5, -1, -1, -1],
            [2, 3, 0, 2, 5, 3],
            [1, 4, 0, 1, 5, 4],
            [4, 2, 5, -1, -1, -1],
            [4, 5, 2, -1, -1, -1],
            [4, 1, 0, 4, 5, 1],
            [3, 2, 0, 3, 5, 2],
            [1, 3, 5, -1, -1, -1],
            [4, 1, 2, 4, 3, 1],
            [3, 0, 4, -1, -1, -1],
            [2, 0, 1, -1, -1, -1],
            [-1, -1, -1, -1, -1, -1]
        ], dtype=torch.long, device=device)

    num_triangles_table = torch.tensor([0, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 0], dtype=torch.long, device=device)
    base_tet_edges = torch.tensor([0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 2, 3], dtype=torch.long, device=device)
    v_id = torch.pow(2, torch.arange(4, dtype=torch.long, device=device))
    return triangle_table, num_triangles_table, base_tet_edges, v_id



def  extract_fields_from_tets(bound_min, bound_max, resolution, query_func):
    # load tet via resolution #
    # scale them via bounds #
    # extract the geometry #
    # /home/xueyi/gen/DeepMetaHandles/data/tets/100_compress.npz # strange #
    device = bound_min.device
    # if resolution in [64, 70, 80, 90, 100]:
    #     tet_fn = f"/home/xueyi/gen/DeepMetaHandles/data/tets/{resolution}_compress.npz"
    # else:
    tet_fn = f"/home/xueyi/gen/DeepMetaHandles/data/tets/{100}_compress.npz"
    tets = np.load(tet_fn)
    verts = torch.from_numpy(tets['vertices']).float().to(device) # verts positions 
    indices = torch.from_numpy(tets['tets']).long().to(device) # .to(self.device)
    # split #
    # verts; verts; #
    minn_verts, _ = torch.min(verts, dim=0)
    maxx_verts, _ = torch.max(verts, dim=0) # (3, ) # exporting the  
    # scale_verts = maxx_verts - minn_verts
    scale_bounds = bound_max - bound_min # scale bounds #
    
    ### scale the vertices ###
    scaled_verts = (verts - minn_verts.unsqueeze(0)) / (maxx_verts - minn_verts).unsqueeze(0) ### the maxx and minn verts scales ###
    
    # scaled_verts = (verts - minn_verts.unsqueeze(0)) / (maxx_verts - minn_verts).unsqueeze(0) ### the maxx and minn verts scales ###

    scaled_verts = scaled_verts * 2. - 1. # init the sdf filed viathe tet mesh vertices and the sdf values ##
    # scaled_verts = (scaled_verts * scale_bounds.unsqueeze(0)) + bound_min.unsqueeze(0) ## the scaled verts ###
    
    # scaled_verts = scaled_verts - scale_bounds.unsqueeze(0) / 2. # 
    # scaled_verts = scaled_verts -  bound_min.unsqueeze(0) - scale_bounds.unsqueeze(0) / 2.
    
    sdf_values = []
    N = 64
    query_bundles = N ** 3 ### N^3
    query_NNs = scaled_verts.size(0) // query_bundles
    if query_NNs * query_bundles < scaled_verts.size(0):
        query_NNs += 1
    for i_query in range(query_NNs):
        cur_bundle_st = i_query * query_bundles
        cur_bundle_ed = (i_query + 1) * query_bundles
        cur_bundle_ed = min(cur_bundle_ed, scaled_verts.size(0))
        cur_query_pts = scaled_verts[cur_bundle_st: cur_bundle_ed]
        cur_query_vals = query_func(cur_query_pts)
        sdf_values.append(cur_query_vals)
    sdf_values = torch.cat(sdf_values, dim=0)
    # print(f"queryed sdf values: {sdf_values.size()}") #
    
    GT_sdf_values = np.load("/home/xueyi/diffsim/DiffHand/assets/hand/100_sdf_values.npy", allow_pickle=True)
    GT_sdf_values = torch.from_numpy(GT_sdf_values).float().to(device)
    
    # intrinsic, tet values, pts values, sdf network #
    triangle_table, num_triangles_table, base_tet_edges, v_id = create_mt_variable(device)
    tet_table, num_tets_table = create_tetmesh_variables(device)
    
    sdf_values = sdf_values.squeeze(-1) # how the rendering # 
    
    # print(f"GT_sdf_values: {GT_sdf_values.size()}, sdf_values: {sdf_values.size()}, scaled_verts: {scaled_verts.size()}")
    # print(f"scaled_verts: {scaled_verts.size()}, ")
    # pos_nx3, sdf_n, tet_fx4, triangle_table, num_triangles_table, base_tet_edges, v_id,
    # return_tet_mesh=False, ori_v=None, num_tets_table=None, tet_table=None):
    # marching_tets_tetmesh ##
    verts, faces, tet_verts, tets = marching_tets_tetmesh(scaled_verts, sdf_values, indices, triangle_table, num_triangles_table, base_tet_edges, v_id, return_tet_mesh=True, ori_v=scaled_verts, num_tets_table=num_tets_table, tet_table=tet_table)
    ### use the GT sdf values for the marching tets ###
    GT_verts,  GT_faces,  GT_tet_verts,  GT_tets = marching_tets_tetmesh(scaled_verts, GT_sdf_values, indices, triangle_table, num_triangles_table, base_tet_edges, v_id, return_tet_mesh=True, ori_v=scaled_verts, num_tets_table=num_tets_table, tet_table=tet_table)
    
    # print(f"After tet marching with verts: {verts.size()}, faces: {faces.size()}")
    return verts, faces, sdf_values, GT_verts, GT_faces  # verts, faces #

def extract_fields(bound_min, bound_max, resolution, query_func):
    N = 64
    X = torch.linspace(bound_min[0], bound_max[0], resolution).split(N)
    Y = torch.linspace(bound_min[1], bound_max[1], resolution).split(N)
    Z = torch.linspace(bound_min[2], bound_max[2], resolution).split(N)

    u = np.zeros([resolution, resolution, resolution], dtype=np.float32)
    with torch.no_grad():
        for xi, xs in enumerate(X):
            for yi, ys in enumerate(Y):
                for zi, zs in enumerate(Z):
                    xx, yy, zz = torch.meshgrid(xs, ys, zs)
                    pts = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1)
                    val = query_func(pts).reshape(len(xs), len(ys), len(zs)).detach().cpu().numpy()
                    u[xi * N: xi * N + len(xs), yi * N: yi * N + len(ys), zi * N: zi * N + len(zs)] = val
        # should save u here #
        # save_u_path = os.path.join("/data2/datasets/diffsim/neus/exp/hand_test/womask_sphere_reverse_value/other_saved", "sdf_values.npy")
        # np.save(save_u_path, u)
        # print(f"u saved to {save_u_path}")
    return u


def extract_geometry(bound_min, bound_max, resolution, threshold, query_func):
    print('threshold: {}'.format(threshold))
    
    ## using maching cubes ###
    u = extract_fields(bound_min, bound_max, resolution, query_func)
    vertices, triangles = mcubes.marching_cubes(u, threshold) # grid sdf and marching cubes #
    b_max_np = bound_max.detach().cpu().numpy()
    b_min_np = bound_min.detach().cpu().numpy()

    vertices = vertices / (resolution - 1.0) * (b_max_np - b_min_np)[None, :] + b_min_np[None, :]
    ### using maching cubes ###
    
    ### using marching tets ###
    # vertices, triangles = extract_fields_from_tets(bound_min, bound_max, resolution, query_func)
    # vertices = vertices.detach().cpu().numpy()
    # triangles = triangles.detach().cpu().numpy()
    ### using marching tets ###
    
    # b_max_np = bound_max.detach().cpu().numpy()
    # b_min_np = bound_min.detach().cpu().numpy()

    # vertices = vertices / (resolution - 1.0) * (b_max_np - b_min_np)[None, :] + b_min_np[None, :]
    return vertices, triangles

def extract_geometry_tets(bound_min, bound_max, resolution, threshold, query_func):
    # print('threshold: {}'.format(threshold))
    
    ### using maching cubes ###
    # u = extract_fields(bound_min, bound_max, resolution, query_func)
    # vertices, triangles = mcubes.marching_cubes(u, threshold) # grid sdf and marching cubes #
    # b_max_np = bound_max.detach().cpu().numpy()
    # b_min_np = bound_min.detach().cpu().numpy()

    # vertices = vertices / (resolution - 1.0) * (b_max_np - b_min_np)[None, :] + b_min_np[None, :]
    ### using maching cubes ###
    
    ## 
    ### using marching tets ### fiels from tets ##
    vertices, triangles, tet_sdf_values,  GT_verts, GT_faces  = extract_fields_from_tets(bound_min, bound_max, resolution, query_func)
    # vertices = vertices.detach().cpu().numpy()
    # triangles = triangles.detach().cpu().numpy()
    ### using marching tets ###
    
    # b_max_np = bound_max.detach().cpu().numpy()
    # b_min_np = bound_min.detach().cpu().numpy()
    #

    # vertices = vertices / (resolution - 1.0) * (b_max_np - b_min_np)[None, :] + b_min_np[None, :]
    return vertices, triangles, tet_sdf_values,  GT_verts, GT_faces 


def sample_pdf(bins, weights, n_samples, det=False):
    # This implementation is from NeRF
    # Get pdf
    weights = weights + 1e-5  # prevent nans
    pdf = weights / torch.sum(weights, -1, keepdim=True)
    cdf = torch.cumsum(pdf, -1)
    cdf = torch.cat([torch.zeros_like(cdf[..., :1]), cdf], -1)
    # Take uniform samples
    if det:
        u = torch.linspace(0. + 0.5 / n_samples, 1. - 0.5 / n_samples, steps=n_samples)
        u = u.expand(list(cdf.shape[:-1]) + [n_samples])
    else:
        u = torch.rand(list(cdf.shape[:-1]) + [n_samples])

    # Invert CDF # invert cdf # 
    u = u.contiguous()
    inds = torch.searchsorted(cdf, u, right=True)
    below = torch.max(torch.zeros_like(inds - 1), inds - 1)
    above = torch.min((cdf.shape[-1] - 1) * torch.ones_like(inds), inds)
    inds_g = torch.stack([below, above], -1)  # (batch, N_samples, 2)

    matched_shape = [inds_g.shape[0], inds_g.shape[1], cdf.shape[-1]]
    cdf_g = torch.gather(cdf.unsqueeze(1).expand(matched_shape), 2, inds_g)
    bins_g = torch.gather(bins.unsqueeze(1).expand(matched_shape), 2, inds_g)

    denom = (cdf_g[..., 1] - cdf_g[..., 0])
    denom = torch.where(denom < 1e-5, torch.ones_like(denom), denom)
    t = (u - cdf_g[..., 0]) / denom
    samples = bins_g[..., 0] + t * (bins_g[..., 1] - bins_g[..., 0])

    return samples


def load_GT_vertices(GT_meshes_folder):
    tot_meshes_fns = os.listdir(GT_meshes_folder)
    tot_meshes_fns = [fn for fn in tot_meshes_fns if fn.endswith(".obj")]
    tot_mesh_verts = []
    tot_mesh_faces = []
    n_tot_verts = 0
    for fn in tot_meshes_fns:
        cur_mesh_fn = os.path.join(GT_meshes_folder, fn)
        obj_mesh = trimesh.load(cur_mesh_fn, process=False)
        # obj_mesh.remove_degenerate_faces(height=1e-06)

        verts_obj = np.array(obj_mesh.vertices)
        faces_obj = np.array(obj_mesh.faces)
        
        tot_mesh_verts.append(verts_obj)
        tot_mesh_faces.append(faces_obj + n_tot_verts)
        n_tot_verts += verts_obj.shape[0]
        
        # tot_mesh_faces.append(faces_obj)
    tot_mesh_verts = np.concatenate(tot_mesh_verts, axis=0)
    tot_mesh_faces = np.concatenate(tot_mesh_faces, axis=0)
    return tot_mesh_verts, tot_mesh_faces


class NeuSRenderer:
    def __init__(self,
                 nerf,
                 sdf_network,
                 deviation_network,
                 color_network,
                 n_samples,
                 n_importance,
                 n_outside,
                 up_sample_steps,
                 perturb):
        self.nerf = nerf
        self.sdf_network = sdf_network
        self.deviation_network = deviation_network
        self.color_network = color_network
        self.n_samples = n_samples
        self.n_importance = n_importance
        self.n_outside = n_outside
        self.up_sample_steps = up_sample_steps
        self.perturb = perturb
        
        GT_meshes_folder = "/home/xueyi/diffsim/DiffHand/assets/hand"
        self.mesh_vertices, self.mesh_faces = load_GT_vertices(GT_meshes_folder=GT_meshes_folder)
        maxx_pts = 25.
        minn_pts = -15.
        self.mesh_vertices = (self.mesh_vertices - minn_pts) / (maxx_pts - minn_pts)
        f = SDF(self.mesh_vertices, self.mesh_faces)
        self.gt_sdf = f ## a unite sphere or box
        
        self.minn_pts = 0
        self.maxx_pts = 1.
        
        # self.minn_pts = -1.5
        # self.maxx_pts = 1.5
        self.bkg_pts = ... # TODO: the bkg pts 
        self.cur_fr_bkg_pts_defs = ... # TODO: set the cur_bkg_pts_defs for each frame #
        self.dist_interp_thres = ... # TODO
        
    # get the pts and render the pts #
    # pts and the rendering pts #
    def deform_pts(self, pts):
        # pts: nn_batch x nn_samples x 3
        nnb, nns = pts.size(0), pts.size(1)
        pts_exp = pts.contiguous().view(nnb * nns, -1).contiguous()
        dist_pts_to_bkg_pts = torch.sum(
            (pts_exp.unsqueeze(1) - self.bkg_pts.unsqueeze(0)) ** 2, dim=-1 ## nn_pts_exp x nn_bkg_pts 
        )
        
    
        

    def render_core_outside(self, rays_o, rays_d, z_vals, sample_dist, nerf, background_rgb=None):
        """
        Render background
        """
        batch_size, n_samples = z_vals.shape

        # Section length
        dists = z_vals[..., 1:] - z_vals[..., :-1]
        dists = torch.cat([dists, torch.Tensor([sample_dist]).expand(dists[..., :1].shape)], -1)
        mid_z_vals = z_vals + dists * 0.5

        # Section midpoints #
        pts = rays_o[:, None, :] + rays_d[:, None, :] * mid_z_vals[..., :, None]  # batch_size, n_samples, 3 #
        
        # pts = pts.flip((-1,)) * 2 - 1
        pts = pts * 2 - 1

        dis_to_center = torch.linalg.norm(pts, ord=2, dim=-1, keepdim=True).clip(1.0, 1e10)
        pts = torch.cat([pts / dis_to_center, 1.0 / dis_to_center], dim=-1)       # batch_size, n_samples, 4 #

        dirs = rays_d[:, None, :].expand(batch_size, n_samples, 3)

        pts = pts.reshape(-1, 3 + int(self.n_outside > 0))
        dirs = dirs.reshape(-1, 3)

        density, sampled_color = nerf(pts, dirs)
        sampled_color = torch.sigmoid(sampled_color)
        alpha = 1.0 - torch.exp(-F.softplus(density.reshape(batch_size, n_samples)) * dists)
        alpha = alpha.reshape(batch_size, n_samples)
        weights = alpha * torch.cumprod(torch.cat([torch.ones([batch_size, 1]), 1. - alpha + 1e-7], -1), -1)[:, :-1]
        sampled_color = sampled_color.reshape(batch_size, n_samples, 3)
        color = (weights[:, :, None] * sampled_color).sum(dim=1)
        if background_rgb is not None:
            color = color + background_rgb * (1.0 - weights.sum(dim=-1, keepdim=True))

        return {
            'color': color,
            'sampled_color': sampled_color,
            'alpha': alpha,
            'weights': weights,
        }

    def up_sample(self, rays_o, rays_d, z_vals, sdf, n_importance, inv_s):
        """
        Up sampling give a fixed inv_s
        """
        batch_size, n_samples = z_vals.shape
        pts = rays_o[:, None, :] + rays_d[:, None, :] * z_vals[..., :, None]  # n_rays, n_samples, 3
        
        # pts = pts.flip((-1,)) * 2 - 1
        pts = pts * 2 - 1
        
        radius = torch.linalg.norm(pts, ord=2, dim=-1, keepdim=False)
        inside_sphere = (radius[:, :-1] < 1.0) | (radius[:, 1:] < 1.0)
        sdf = sdf.reshape(batch_size, n_samples)
        prev_sdf, next_sdf = sdf[:, :-1], sdf[:, 1:]
        prev_z_vals, next_z_vals = z_vals[:, :-1], z_vals[:, 1:]
        mid_sdf = (prev_sdf + next_sdf) * 0.5
        cos_val = (next_sdf - prev_sdf) / (next_z_vals - prev_z_vals + 1e-5)

        # ----------------------------------------------------------------------------------------------------------
        # Use min value of [ cos, prev_cos ]
        # Though it makes the sampling (not rendering) a little bit biased, this strategy can make the sampling more
        # robust when meeting situations like below:
        #
        # SDF
        # ^
        # |\          -----x----...
        # | \        /
        # |  x      x
        # |---\----/-------------> 0 level
        # |    \  /
        # |     \/
        # |
        # ----------------------------------------------------------------------------------------------------------
        prev_cos_val = torch.cat([torch.zeros([batch_size, 1]), cos_val[:, :-1]], dim=-1)
        cos_val = torch.stack([prev_cos_val, cos_val], dim=-1)
        cos_val, _ = torch.min(cos_val, dim=-1, keepdim=False)
        cos_val = cos_val.clip(-1e3, 0.0) * inside_sphere

        dist = (next_z_vals - prev_z_vals)
        prev_esti_sdf = mid_sdf - cos_val * dist * 0.5
        next_esti_sdf = mid_sdf + cos_val * dist * 0.5
        prev_cdf = torch.sigmoid(prev_esti_sdf * inv_s)
        next_cdf = torch.sigmoid(next_esti_sdf * inv_s)
        alpha = (prev_cdf - next_cdf + 1e-5) / (prev_cdf + 1e-5)
        weights = alpha * torch.cumprod(
            torch.cat([torch.ones([batch_size, 1]), 1. - alpha + 1e-7], -1), -1)[:, :-1]

        z_samples = sample_pdf(z_vals, weights, n_importance, det=True).detach()
        return z_samples

    def cat_z_vals(self, rays_o, rays_d, z_vals, new_z_vals, sdf, last=False):
        batch_size, n_samples = z_vals.shape
        _, n_importance = new_z_vals.shape
        pts = rays_o[:, None, :] + rays_d[:, None, :] * new_z_vals[..., :, None]
        
        # pts = pts.flip((-1,)) * 2 - 1
        pts = pts * 2 - 1
        
        z_vals = torch.cat([z_vals, new_z_vals], dim=-1)
        z_vals, index = torch.sort(z_vals, dim=-1)

        if not last:
            new_sdf = self.sdf_network.sdf(pts.reshape(-1, 3)).reshape(batch_size, n_importance)
            sdf = torch.cat([sdf, new_sdf], dim=-1)
            xx = torch.arange(batch_size)[:, None].expand(batch_size, n_samples + n_importance).reshape(-1)
            index = index.reshape(-1)
            sdf = sdf[(xx, index)].reshape(batch_size, n_samples + n_importance)

        return z_vals, sdf

    def render_core(self,
                    rays_o,
                    rays_d,
                    z_vals,
                    sample_dist,
                    sdf_network,
                    deviation_network,
                    color_network,
                    background_alpha=None,
                    background_sampled_color=None,
                    background_rgb=None,
                    cos_anneal_ratio=0.0):
        batch_size, n_samples = z_vals.shape

        # Section length
        dists = z_vals[..., 1:] - z_vals[..., :-1]
        dists = torch.cat([dists, torch.Tensor([sample_dist]).expand(dists[..., :1].shape)], -1)
        mid_z_vals = z_vals + dists * 0.5 # z_vals and dists * 0.5 #

        # Section midpoints
        pts = rays_o[:, None, :] + rays_d[:, None, :] * mid_z_vals[..., :, None]  # n_rays, n_samples, 3
        dirs = rays_d[:, None, :].expand(pts.shape)

        pts = pts.reshape(-1, 3) # pts, nn_ou
        dirs = dirs.reshape(-1, 3)
        
        pts = (pts - self.minn_pts) / (self.maxx_pts - self.minn_pts)
        
        # pts = pts.flip((-1,)) * 2 - 1 # 
        pts = pts * 2 - 1

        sdf_nn_output = sdf_network(pts)
        sdf = sdf_nn_output[:, :1]
        feature_vector = sdf_nn_output[:, 1:]

        gradients = sdf_network.gradient(pts).squeeze()
        sampled_color = color_network(pts, gradients, dirs, feature_vector).reshape(batch_size, n_samples, 3)

        # deviation network #
        inv_s = deviation_network(torch.zeros([1, 3]))[:, :1].clip(1e-6, 1e6)           # Single parameter
        inv_s = inv_s.expand(batch_size * n_samples, 1)

        true_cos = (dirs * gradients).sum(-1, keepdim=True)

        # "cos_anneal_ratio" grows from 0 to 1 in the beginning training iterations. The anneal strategy below makes
        # the cos value "not dead" at the beginning training iterations, for better convergence.
        iter_cos = -(F.relu(-true_cos * 0.5 + 0.5) * (1.0 - cos_anneal_ratio) +
                     F.relu(-true_cos) * cos_anneal_ratio)  # always non-positive

        # Estimate signed distances at section points
        estimated_next_sdf = sdf + iter_cos * dists.reshape(-1, 1) * 0.5
        estimated_prev_sdf = sdf - iter_cos * dists.reshape(-1, 1) * 0.5

        prev_cdf = torch.sigmoid(estimated_prev_sdf * inv_s)
        next_cdf = torch.sigmoid(estimated_next_sdf * inv_s)

        p = prev_cdf - next_cdf
        c = prev_cdf

        alpha = ((p + 1e-5) / (c + 1e-5)).reshape(batch_size, n_samples).clip(0.0, 1.0)

        pts_norm = torch.linalg.norm(pts, ord=2, dim=-1, keepdim=True).reshape(batch_size, n_samples)
        inside_sphere = (pts_norm < 1.0).float().detach()
        relax_inside_sphere = (pts_norm < 1.2).float().detach()

        # Render with background
        if background_alpha is not None:
            alpha = alpha * inside_sphere + background_alpha[:, :n_samples] * (1.0 - inside_sphere)
            alpha = torch.cat([alpha, background_alpha[:, n_samples:]], dim=-1)
            sampled_color = sampled_color * inside_sphere[:, :, None] +\
                            background_sampled_color[:, :n_samples] * (1.0 - inside_sphere)[:, :, None]
            sampled_color = torch.cat([sampled_color, background_sampled_color[:, n_samples:]], dim=1)

        weights = alpha * torch.cumprod(torch.cat([torch.ones([batch_size, 1]), 1. - alpha + 1e-7], -1), -1)[:, :-1]
        weights_sum = weights.sum(dim=-1, keepdim=True)

        color = (sampled_color * weights[:, :, None]).sum(dim=1)
        if background_rgb is not None:    # Fixed background, usually black
            color = color + background_rgb * (1.0 - weights_sum)

        # Eikonal loss
        gradient_error = (torch.linalg.norm(gradients.reshape(batch_size, n_samples, 3), ord=2,
                                            dim=-1) - 1.0) ** 2
        gradient_error = (relax_inside_sphere * gradient_error).sum() / (relax_inside_sphere.sum() + 1e-5)

        return {
            'color': color,
            'sdf': sdf,
            'dists': dists,
            'gradients': gradients.reshape(batch_size, n_samples, 3),
            's_val': 1.0 / inv_s,
            'mid_z_vals': mid_z_vals,
            'weights': weights,
            'cdf': c.reshape(batch_size, n_samples),
            'gradient_error': gradient_error,
            'inside_sphere': inside_sphere
        }

    def render(self, rays_o, rays_d, near, far, perturb_overwrite=-1, background_rgb=None, cos_anneal_ratio=0.0, use_gt_sdf=False):
        batch_size = len(rays_o)
        sample_dist = 2.0 / self.n_samples   # Assuming the region of interest is a unit sphere
        z_vals = torch.linspace(0.0, 1.0, self.n_samples)
        z_vals = near + (far - near) * z_vals[None, :]

        z_vals_outside = None
        if self.n_outside > 0:
            z_vals_outside = torch.linspace(1e-3, 1.0 - 1.0 / (self.n_outside + 1.0), self.n_outside)

        n_samples = self.n_samples
        perturb = self.perturb

        if perturb_overwrite >= 0:
            perturb = perturb_overwrite
        if perturb > 0:
            t_rand = (torch.rand([batch_size, 1]) - 0.5)
            z_vals = z_vals + t_rand * 2.0 / self.n_samples

            if self.n_outside > 0:
                mids = .5 * (z_vals_outside[..., 1:] + z_vals_outside[..., :-1])
                upper = torch.cat([mids, z_vals_outside[..., -1:]], -1)
                lower = torch.cat([z_vals_outside[..., :1], mids], -1)
                t_rand = torch.rand([batch_size, z_vals_outside.shape[-1]])
                z_vals_outside = lower[None, :] + (upper - lower)[None, :] * t_rand

        if self.n_outside > 0:
            z_vals_outside = far / torch.flip(z_vals_outside, dims=[-1]) + 1.0 / self.n_samples

        background_alpha = None
        background_sampled_color = None

        # Up sample
        if self.n_importance > 0:
            with torch.no_grad():
                pts = rays_o[:, None, :] + rays_d[:, None, :] * z_vals[..., :, None]
                
                pts = (pts - self.minn_pts) / (self.maxx_pts - self.minn_pts)
                # sdf = self.sdf_network.sdf(pts.reshape(-1, 3)).reshape(batch_size, self.n_samples)
                # gt_sdf #
                
                # 
                # pts = ((pts - xyz_min) / (xyz_max - xyz_min)).flip((-1,)) * 2 - 1
                
                # pts = pts.flip((-1,)) * 2 - 1
                pts = pts * 2 - 1
                
                pts_exp = pts.reshape(-1, 3)
                # minn_pts, _ = torch.min(pts_exp, dim=0)
                # maxx_pts, _ = torch.max(pts_exp, dim=0)
                # print(f"minn_pts: {minn_pts}, maxx_pts: {maxx_pts}")

                # pts_to_near = pts - near.unsqueeze(1)
                # maxx_pts = 1.5; minn_pts = -1.5
                # # maxx_pts = 3; minn_pts = -3
                # # maxx_pts = 1; minn_pts = -1
                # pts_exp = (pts_exp - minn_pts) / (maxx_pts - minn_pts)
                
                ## render and iamges  ####  
                if use_gt_sdf:
                    ### use the GT sdf field ####
                    # print(f"Using gt sdf :")
                    sdf = self.gt_sdf(pts_exp.reshape(-1, 3).detach().cpu().numpy())
                    sdf = torch.from_numpy(sdf).float().cuda()
                    sdf = sdf.reshape(batch_size, self.n_samples)
                    ### use the GT sdf field ####
                else:
                    #### use the optimized sdf field ####
                    sdf = self.sdf_network.sdf(pts_exp).reshape(batch_size, self.n_samples)
                    #### use the optimized sdf field ####

                for i in range(self.up_sample_steps):
                    new_z_vals = self.up_sample(rays_o,
                                                rays_d,
                                                z_vals,
                                                sdf,
                                                self.n_importance // self.up_sample_steps,
                                                64 * 2**i)
                    z_vals, sdf = self.cat_z_vals(rays_o,
                                                  rays_d,
                                                  z_vals,
                                                  new_z_vals,
                                                  sdf,
                                                  last=(i + 1 == self.up_sample_steps))

            n_samples = self.n_samples + self.n_importance

        # Background model
        if self.n_outside > 0:
            z_vals_feed = torch.cat([z_vals, z_vals_outside], dim=-1)
            z_vals_feed, _ = torch.sort(z_vals_feed, dim=-1)
            ret_outside = self.render_core_outside(rays_o, rays_d, z_vals_feed, sample_dist, self.nerf)

            background_sampled_color = ret_outside['sampled_color']
            background_alpha = ret_outside['alpha']

        # Render core
        ret_fine = self.render_core(rays_o, # 
                                    rays_d,
                                    z_vals,
                                    sample_dist,
                                    self.sdf_network,
                                    self.deviation_network,
                                    self.color_network,
                                    background_rgb=background_rgb,
                                    background_alpha=background_alpha,
                                    background_sampled_color=background_sampled_color,
                                    cos_anneal_ratio=cos_anneal_ratio)

        color_fine = ret_fine['color']
        weights = ret_fine['weights']
        weights_sum = weights.sum(dim=-1, keepdim=True)
        gradients = ret_fine['gradients']
        s_val = ret_fine['s_val'].reshape(batch_size, n_samples).mean(dim=-1, keepdim=True)

        return {
            'color_fine': color_fine,
            's_val': s_val,
            'cdf_fine': ret_fine['cdf'],
            'weight_sum': weights_sum,
            'weight_max': torch.max(weights, dim=-1, keepdim=True)[0],
            'gradients': gradients,
            'weights': weights,
            'gradient_error': ret_fine['gradient_error'],
            'inside_sphere': ret_fine['inside_sphere']
        }

    def extract_geometry(self, bound_min, bound_max, resolution, threshold=0.0):
        return extract_geometry(bound_min, # extract geometry #
                                bound_max,
                                resolution=resolution,
                                threshold=threshold,
                                query_func=lambda pts: -self.sdf_network.sdf(pts))
        
    def extract_geometry_tets(self, bound_min, bound_max, resolution, threshold=0.0):
        return extract_geometry_tets(bound_min, # extract geometry #
                                bound_max,
                                resolution=resolution,
                                threshold=threshold,
                                query_func=lambda pts: -self.sdf_network.sdf(pts))