Spaces:
Running
Running
File size: 62,058 Bytes
710e818 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 |
"""Mesh data utilities."""
from re import I
# import matplotlib.pyplot as plt
# from mpl_toolkits import mplot3d # pylint: disable=unused-import
# from mpl_toolkits.mplot3d.art3d import Poly3DCollection
import networkx as nx
import numpy as np
import six
import os
import math
import torch
import models.fields as fields
# from options.options import opt
# from polygen_torch.
# from utils.constants import MASK_GRID_VALIE
try:
from torch_cluster import fps
except:
pass
MAX_RANGE = 0.1
MIN_RANGE = -0.1
# import open3d as o3d
def calculate_correspondences(last_mesh, bending_network, tot_timesteps, delta_bending):
# iterate all the timesteps and get the bended
timestep_to_pts = {
tot_timesteps - 1: last_mesh.detach().cpu().numpy()
}
if delta_bending:
for i_ts in range(tot_timesteps - 1, -1, -1):
if isinstance(bending_network, list):
tot_offsets = []
for i_bending, cur_bending_net in enumerate(bending_network):
cur_def_pts = cur_bending_net(last_mesh, i_ts)
tot_offsets.append(cur_def_pts - last_mesh)
tot_offsets = torch.stack(tot_offsets, dim=0)
tot_offsets = torch.sum(tot_offsets, dim=0)
last_mesh = last_mesh + tot_offsets
else:
last_mesh = bending_network(last_mesh, i_ts)
timestep_to_pts[i_ts - 1] = last_mesh.detach().cpu().numpy()
elif isinstance(bending_network, fields.BendingNetworkRigidTrans):
for i_ts in range(tot_timesteps - 1, -1, -1):
last_mesh = bending_network.forward_delta(last_mesh, i_ts)
timestep_to_pts[i_ts - 1] = last_mesh.detach().cpu().numpy()
else:
raise ValueError(f"the function is designed for delta bending")
return timestep_to_pts
# pass
def joint_infos_to_numpy(joint_infos):
joint_infos_np = []
for part_joint_info in joint_infos:
for zz in ["dir", "center"]:
# if isinstance(part_joint_info["axis"][zz], np.array):
part_joint_info["axis"][zz] = part_joint_info["axis"][zz].detach().numpy()
joint_infos_np.append(part_joint_info)
return joint_infos_np
def normalie_pc_bbox_batched(pc, rt_stats=False):
pc_min = torch.min(pc, dim=1, keepdim=True)[0]
pc_max = torch.max(pc, dim=1, keepdim=True)[0]
pc_center = 0.5 * (pc_min + pc_max)
pc = pc - pc_center
extents = pc_max - pc_min
scale = torch.sqrt(torch.sum(extents ** 2, dim=-1, keepdim=True))
pc = pc / torch.clamp(scale, min=1e-6)
if rt_stats:
return pc, pc_center, scale
else:
return pc
def scale_vertices_to_target_scale(vertices, target_scale):
# vertices: bsz x N x 3;
# target_scale: bsz x 1
# normalized_vertices = normalize_vertices_scale_torch(vertices)
normalized_vertices = normalie_pc_bbox_batched(vertices)
normalized_vertices = normalized_vertices * target_scale.unsqueeze(1)
return normalized_vertices
def compute_normals_o3d(verts, faces): #### assume no batching... ####
mesh = o3d.geometry.TriangleMesh()
# o3d_mesh_b.vertices = verts_b
# o3d_mesh_b.triangles = np.array(faces_b, dtype=np.long)
mesh.vertices = verts.detach().cpu().numpy()
mesh.triangles = faces.detach().cpu().numpy().astype(np.long)
verts_normals = mesh.compute_vertex_normals(normalized=True)
verts_normals = torch.from_numpy(verts_normals, dtype=torch.float32).cuda()
return verts_normals
def get_vals_via_nearest_neighbours(pts_src, pts_tar, val_tar):
### n_src x 3 ---> n_src x n_tar
dist_src_tar = torch.sum((pts_src.unsqueeze(-2) - pts_tar.unsqueeze(0)) ** 2, dim=-1)
minn_dists_src_tar, minn_dists_tar_idxes = torch.min(dist_src_tar, dim=-1) ### n_src
selected_src_val = batched_index_select(values=val_tar, indices=minn_dists_tar_idxes, dim=0) ### n_src x dim
return selected_src_val
## sample conected componetn start from selected_verts
def sample_bfs_component(selected_vert, faces, max_num_grids):
vert_idx_to_adj_verts = {}
for i_f, cur_f in enumerate(faces):
# for i0, v0 in enumerate(cur_f):
for i0 in range(len(cur_f)):
v0 = cur_f[i0] - 1
i1 = (i0 + 1) % len(cur_f)
v1 = cur_f[i1] - 1
if v0 not in vert_idx_to_adj_verts:
vert_idx_to_adj_verts[v0] = {v1: 1}
else:
vert_idx_to_adj_verts[v0][v1] = 1
if v1 not in vert_idx_to_adj_verts:
vert_idx_to_adj_verts[v1] = {v0: 1}
else:
vert_idx_to_adj_verts[v1][v0] = 1
vert_idx_to_visited = {} # whether visisted here #
vis_que = [selected_vert]
vert_idx_to_visited[selected_vert] = 1
visited = [selected_vert]
while len(vis_que) > 0 and len(visited) < max_num_grids:
cur_frnt_vert = vis_que[0]
vis_que.pop(0)
if cur_frnt_vert in vert_idx_to_adj_verts:
cur_frnt_vert_adjs = vert_idx_to_adj_verts[cur_frnt_vert]
for adj_vert in cur_frnt_vert_adjs:
if adj_vert not in vert_idx_to_visited:
vert_idx_to_visited[adj_vert] = 1
vis_que.append(adj_vert)
visited.append(adj_vert)
if len(visited) >= max_num_grids:
visited = visited[: max_num_grids - 1]
return visited
def select_faces_via_verts(selected_verts, faces):
if not isinstance(selected_verts, list):
selected_verts = selected_verts.tolist()
# selected_verts_dict = {ii: 1 for ii in selected_verts}
old_idx_to_new_idx = {v + 1: ii + 1 for ii, v in enumerate(selected_verts)} ####### v + 1: ii + 1 --> for the selected_verts
new_faces = []
for i_f, cur_f in enumerate(faces):
cur_new_f = []
valid = True
for cur_v in cur_f:
if cur_v in old_idx_to_new_idx:
cur_new_f.append(old_idx_to_new_idx[cur_v])
else:
valid = False
break
if valid:
new_faces.append(cur_new_f)
return new_faces
def convert_grid_content_to_grid_pts(content_value, grid_size):
flat_grid = torch.zeros([grid_size ** 3], dtype=torch.long)
cur_idx = flat_grid.size(0) - 1
while content_value > 0:
flat_grid[cur_idx] = content_value % grid_size
content_value = content_value // grid_size
cur_idx -= 1
grid_pts = flat_grid.contiguous().view(grid_size, grid_size, grid_size).contiguous()
return grid_pts
# 0.2
def warp_coord(sampled_gradients, val, reflect=False): # val from [0.0, 1.0] # from the 0.0
# assume single value as inputs
grad_values = sampled_gradients.tolist()
# mid_val
mid_val = grad_values[0] * 0.2 + grad_values[1] * 0.2 + grad_values[2] * 0.1
if reflect:
grad_values[3] = grad_values[1]
grad_values[4] = grad_values[0]
# if not reflect:
accum_val = 0.0
for i_val in range(len(grad_values)):
if val > 0.2 * (i_val + 1) and i_val < 4: # if i_val == 4, directly use the reamining length * corresponding gradient value
accum_val += grad_values[i_val] * 0.2
else:
accum_val += grad_values[i_val] * (val - 0.2 * i_val)
break
return accum_val # modified value
def random_shift(vertices, shift_factor=0.25):
"""Apply random shift to vertices."""
# max_shift_pos = tf.cast(255 - tf.reduce_max(vertices, axis=0), tf.float32)
# max_shift_pos = tf.maximum(max_shift_pos, 1e-9)
# max_shift_neg = tf.cast(tf.reduce_min(vertices, axis=0), tf.float32)
# max_shift_neg = tf.maximum(max_shift_neg, 1e-9)
# shift = tfd.TruncatedNormal(
# tf.zeros([1, 3]), shift_factor*255, -max_shift_neg,
# max_shift_pos).sample()
# shift = tf.cast(shift, tf.int32)
# vertices += shift
minn_tensor = torch.tensor([1e-9], dtype=torch.float32)
max_shift_pos = (255 - torch.max(vertices, dim=0)[0]).float()
max_shift_pos = torch.maximum(max_shift_pos, minn_tensor)
max_shift_neg = (torch.min(vertices, dim=0)[0]).float()
max_shift_neg = torch.maximum(max_shift_neg, minn_tensor)
shift = torch.zeros((1, 3), dtype=torch.float32)
# torch.nn.init.trunc_normal_(shift, 0., shift_factor * 255., -max_shift_neg, max_shift_pos)
for i_s in range(shift.size(-1)):
cur_axis_max_shift_neg = max_shift_neg[i_s].item()
cur_axis_max_shift_pos = max_shift_pos[i_s].item()
cur_axis_shift = torch.zeros((1,), dtype=torch.float32)
torch.nn.init.trunc_normal_(cur_axis_shift, 0., shift_factor * 255., -cur_axis_max_shift_neg, cur_axis_max_shift_pos)
shift[:, i_s] = cur_axis_shift.item()
shift = shift.long()
vertices += shift
return vertices
def safe_transpose(tsr, dima, dimb):
tsr = tsr.contiguous().transpose(dima, dimb).contiguous()
return tsr
def batched_index_select(values, indices, dim = 1):
value_dims = values.shape[(dim + 1):]
values_shape, indices_shape = map(lambda t: list(t.shape), (values, indices))
indices = indices[(..., *((None,) * len(value_dims)))]
indices = indices.expand(*((-1,) * len(indices_shape)), *value_dims)
value_expand_len = len(indices_shape) - (dim + 1)
values = values[(*((slice(None),) * dim), *((None,) * value_expand_len), ...)]
value_expand_shape = [-1] * len(values.shape)
expand_slice = slice(dim, (dim + value_expand_len))
value_expand_shape[expand_slice] = indices.shape[expand_slice]
values = values.expand(*value_expand_shape)
dim += value_expand_len
return values.gather(dim, indices)
def read_obj_file_ours(obj_fn, sub_one=False):
vertices = []
faces = []
with open(obj_fn, "r") as rf:
for line in rf:
items = line.strip().split(" ")
if items[0] == 'v':
cur_verts = items[1:]
cur_verts = [float(vv) for vv in cur_verts]
vertices.append(cur_verts)
elif items[0] == 'f':
cur_faces = items[1:] # faces
cur_face_idxes = []
for cur_f in cur_faces:
try:
cur_f_idx = int(cur_f.split("/")[0])
except:
cur_f_idx = int(cur_f.split("//")[0])
cur_face_idxes.append(cur_f_idx if not sub_one else cur_f_idx - 1)
faces.append(cur_face_idxes)
rf.close()
vertices = np.array(vertices, dtype=np.float)
return vertices, faces
def read_obj_file(obj_file):
"""Read vertices and faces from already opened file."""
vertex_list = []
flat_vertices_list = []
flat_vertices_indices = {}
flat_triangles = []
for line in obj_file:
tokens = line.split()
if not tokens:
continue
line_type = tokens[0]
# We skip lines not starting with v or f.
if line_type == 'v': #
vertex_list.append([float(x) for x in tokens[1:]])
elif line_type == 'f':
triangle = []
for i in range(len(tokens) - 1):
vertex_name = tokens[i + 1]
if vertex_name in flat_vertices_indices: # triangles
triangle.append(flat_vertices_indices[vertex_name])
continue
flat_vertex = []
for index in six.ensure_str(vertex_name).split('/'):
if not index:
continue
# obj triangle indices are 1 indexed, so subtract 1 here.
flat_vertex += vertex_list[int(index) - 1]
flat_vertex_index = len(flat_vertices_list)
flat_vertices_list.append(flat_vertex)
# flat_vertex_index
flat_vertices_indices[vertex_name] = flat_vertex_index
triangle.append(flat_vertex_index)
flat_triangles.append(triangle)
return np.array(flat_vertices_list, dtype=np.float32), flat_triangles
def batched_index_select(values, indices, dim = 1):
value_dims = values.shape[(dim + 1):]
values_shape, indices_shape = map(lambda t: list(t.shape), (values, indices))
indices = indices[(..., *((None,) * len(value_dims)))]
indices = indices.expand(*((-1,) * len(indices_shape)), *value_dims)
value_expand_len = len(indices_shape) - (dim + 1)
values = values[(*((slice(None),) * dim), *((None,) * value_expand_len), ...)]
value_expand_shape = [-1] * len(values.shape)
expand_slice = slice(dim, (dim + value_expand_len))
value_expand_shape[expand_slice] = indices.shape[expand_slice]
values = values.expand(*value_expand_shape)
dim += value_expand_len
return values.gather(dim, indices)
def safe_transpose(x, dim1, dim2):
x = x.contiguous().transpose(dim1, dim2).contiguous()
return x
def merge_meshes(vertices_list, faces_list):
tot_vertices = []
tot_faces = []
nn_verts = 0
for cur_vertices, cur_faces in zip(vertices_list, faces_list):
tot_vertices.append(cur_vertices)
new_cur_faces = []
for cur_face_idx in cur_faces:
new_cur_face_idx = [vert_idx + nn_verts for vert_idx in cur_face_idx]
new_cur_faces.append(new_cur_face_idx)
nn_verts += cur_vertices.shape[0]
tot_faces += new_cur_faces # get total-faces
tot_vertices = np.concatenate(tot_vertices, axis=0)
return tot_vertices, tot_faces
def read_obj(obj_path):
"""Open .obj file from the path provided and read vertices and faces."""
with open(obj_path) as obj_file:
return read_obj_file_ours(obj_path, sub_one=True)
# return read_obj_file(obj_file)
def center_vertices(vertices):
"""Translate the vertices so that bounding box is centered at zero."""
vert_min = vertices.min(axis=0)
vert_max = vertices.max(axis=0)
vert_center = 0.5 * (vert_min + vert_max)
return vertices - vert_center
def normalize_vertices_scale(vertices):
"""Scale the vertices so that the long diagonal of the bounding box is one."""
vert_min = vertices.min(axis=0)
vert_max = vertices.max(axis=0)
extents = vert_max - vert_min
scale = np.sqrt(np.sum(extents**2)) # normalize the diagonal line to 1.
return vertices / scale
def get_vertices_center(vertices):
vert_min = vertices.min(axis=0)
vert_max = vertices.max(axis=0)
vert_center = 0.5 * (vert_min + vert_max)
return vert_center
def get_batched_vertices_center(vertices):
vert_min = vertices.min(axis=1)
vert_max = vertices.max(axis=1)
vert_center = 0.5 * (vert_min + vert_max)
return vert_center
def get_vertices_scale(vertices):
vert_min = vertices.min(axis=0)
vert_max = vertices.max(axis=0)
extents = vert_max - vert_min
scale = np.sqrt(np.sum(extents**2))
return scale
def quantize_verts(verts, n_bits=8, min_range=None, max_range=None):
"""Convert vertices in [-1., 1.] to discrete values in [0, n_bits**2 - 1]."""
min_range = -0.5 if min_range is None else min_range
max_range = 0.5 if max_range is None else max_range
range_quantize = 2**n_bits - 1
verts_quantize = (verts - min_range) * range_quantize / (
max_range - min_range)
return verts_quantize.astype('int32')
def quantize_verts_torch(verts, n_bits=8, min_range=None, max_range=None):
min_range = -0.5 if min_range is None else min_range
max_range = 0.5 if max_range is None else max_range
range_quantize = 2**n_bits - 1
verts_quantize = (verts - min_range) * range_quantize / (
max_range - min_range)
return verts_quantize.long()
def dequantize_verts(verts, n_bits=8, add_noise=False, min_range=None, max_range=None):
"""Convert quantized vertices to floats."""
min_range = -0.5 if min_range is None else min_range
max_range = 0.5 if max_range is None else max_range
range_quantize = 2**n_bits - 1
verts = verts.astype('float32')
verts = verts * (max_range - min_range) / range_quantize + min_range
if add_noise:
verts += np.random.uniform(size=verts.shape) * (1 / range_quantize)
return verts
def dequantize_verts_torch(verts, n_bits=8, add_noise=False, min_range=None, max_range=None):
min_range = -0.5 if min_range is None else min_range
max_range = 0.5 if max_range is None else max_range
range_quantize = 2**n_bits - 1
verts = verts.float()
verts = verts * (max_range - min_range) / range_quantize + min_range
# if add_noise:
# verts += np.random.uniform(size=verts.shape) * (1 / range_quantize)
return verts
### dump vertices and faces to the obj file
def write_obj(vertices, faces, file_path, transpose=True, scale=1.):
"""Write vertices and faces to obj."""
if transpose:
vertices = vertices[:, [1, 2, 0]]
vertices *= scale
if faces is not None:
if min(min(faces)) == 0:
f_add = 1
else:
f_add = 0
else:
faces = []
with open(file_path, 'w') as f:
for v in vertices:
f.write('v {} {} {}\n'.format(v[0], v[1], v[2]))
for face in faces:
line = 'f'
for i in face:
line += ' {}'.format(i + f_add)
line += '\n'
f.write(line)
def face_to_cycles(face):
"""Find cycles in face."""
g = nx.Graph()
for v in range(len(face) - 1):
g.add_edge(face[v], face[v + 1])
g.add_edge(face[-1], face[0])
return list(nx.cycle_basis(g))
def flatten_faces(faces):
"""Converts from list of faces to flat face array with stopping indices."""
if not faces:
return np.array([0])
else:
l = [f + [-1] for f in faces[:-1]]
l += [faces[-1] + [-2]]
return np.array([item for sublist in l for item in sublist]) + 2 # pylint: disable=g-complex-comprehension
def unflatten_faces(flat_faces):
"""Converts from flat face sequence to a list of separate faces."""
def group(seq):
g = []
for el in seq:
if el == 0 or el == -1:
yield g
g = []
else:
g.append(el - 1)
yield g
outputs = list(group(flat_faces - 1))[:-1]
# Remove empty faces
return [o for o in outputs if len(o) > 2]
def quantize_process_mesh(vertices, faces, tris=None, quantization_bits=8, remove_du=True):
"""Quantize vertices, remove resulting duplicates and reindex faces."""
vertices = quantize_verts(vertices, quantization_bits)
vertices, inv = np.unique(vertices, axis=0, return_inverse=True) # return inverse and unique the vertices
#
if opt.dataset.sort_dist:
if opt.model.debug:
print("sorting via dist...")
vertices_max = np.max(vertices, axis=0)
vertices_min = np.min(vertices, axis=0)
dist_vertices = np.minimum(np.abs(vertices - np.array([[vertices_min[0], vertices_min[1], 0]])), np.abs(vertices - np.array([[vertices_max[0], vertices_max[1], 0]])))
dist_vertices = np.concatenate([dist_vertices[:, 0:1] + dist_vertices[:, 1:2], dist_vertices[:, 2:]], axis=-1)
sort_inds = np.lexsort(dist_vertices.T)
else:
# Sort vertices by z then y then x.
sort_inds = np.lexsort(vertices.T) # sorted indices...
vertices = vertices[sort_inds]
# Re-index faces and tris to re-ordered vertices.
faces = [np.argsort(sort_inds)[inv[f]] for f in faces]
if tris is not None:
tris = np.array([np.argsort(sort_inds)[inv[t]] for t in tris])
# Merging duplicate vertices and re-indexing the faces causes some faces to
# contain loops (e.g [2, 3, 5, 2, 4]). Split these faces into distinct
# sub-faces.
sub_faces = []
for f in faces:
cliques = face_to_cycles(f)
for c in cliques:
c_length = len(c)
# Only append faces with more than two verts.
if c_length > 2:
d = np.argmin(c)
# Cyclically permute faces just that first index is the smallest.
sub_faces.append([c[(d + i) % c_length] for i in range(c_length)])
faces = sub_faces
if tris is not None:
tris = np.array([v for v in tris if len(set(v)) == len(v)])
# Sort faces by lowest vertex indices. If two faces have the same lowest
# index then sort by next lowest and so on.
faces.sort(key=lambda f: tuple(sorted(f)))
if tris is not None:
tris = tris.tolist()
tris.sort(key=lambda f: tuple(sorted(f)))
tris = np.array(tris)
# After removing degenerate faces some vertices are now unreferenced. # Vertices
# Remove these. # Vertices
num_verts = vertices.shape[0]
# print(f"remove_du: {remove_du}")
if remove_du: ##### num_verts
print("Removing du..")
try:
vert_connected = np.equal(
np.arange(num_verts)[:, None], np.hstack(faces)[None]).any(axis=-1)
vertices = vertices[vert_connected]
# Re-index faces and tris to re-ordered vertices.
vert_indices = (
np.arange(num_verts) - np.cumsum(1 - vert_connected.astype('int')))
faces = [vert_indices[f].tolist() for f in faces]
except:
pass
if tris is not None:
tris = np.array([vert_indices[t].tolist() for t in tris])
return vertices, faces, tris
def process_mesh(vertices, faces, quantization_bits=8, recenter_mesh=True, remove_du=True):
"""Process mesh vertices and faces."""
# Transpose so that z-axis is vertical.
vertices = vertices[:, [2, 0, 1]]
if recenter_mesh:
# Translate the vertices so that bounding box is centered at zero.
vertices = center_vertices(vertices)
# Scale the vertices so that the long diagonal of the bounding box is equal
# to one.
vertices = normalize_vertices_scale(vertices)
# Quantize and sort vertices, remove resulting duplicates, sort and reindex
# faces.
vertices, faces, _ = quantize_process_mesh(
vertices, faces, quantization_bits=quantization_bits, remove_du=remove_du) ##### quantize_process_mesh
# unflatten_faces = np.array(faces, dtype=np.long) ### start from zero
# Flatten faces and add 'new face' = 1 and 'stop' = 0 tokens.
faces = flatten_faces(faces)
# Discard degenerate meshes without faces.
return {
'vertices': vertices,
'faces': faces,
}
def process_mesh_ours(vertices, faces, quantization_bits=8, recenter_mesh=True, remove_du=True):
"""Process mesh vertices and faces."""
# Transpose so that z-axis is vertical.
vertices = vertices[:, [2, 0, 1]]
if recenter_mesh:
# Translate the vertices so that bounding box is centered at zero.
vertices = center_vertices(vertices)
# Scale the vertices so that the long diagonal of the bounding box is equal
# to one.
vertices = normalize_vertices_scale(vertices)
# Quantize and sort vertices, remove resulting duplicates, sort and reindex
# faces.
quant_vertices, faces, _ = quantize_process_mesh(
vertices, faces, quantization_bits=quantization_bits, remove_du=remove_du) ##### quantize_process_mesh
vertices = dequantize_verts(quant_vertices) #### dequantize vertices ####
### vertices: nn_verts x 3
# try:
# # print("faces", faces)
# unflatten_faces = np.array(faces, dtype=np.long)
# except:
# print("faces", faces)
# raise ValueError("Something bad happened when processing meshes...")
# Flatten faces and add 'new face' = 1 and 'stop' = 0 tokens.
faces = flatten_faces(faces)
# Discard degenerate meshes without faces.
return {
'vertices': quant_vertices,
'faces': faces,
# 'unflatten_faces': unflatten_faces,
'dequant_vertices': vertices,
'class_label': 0
}
def read_mesh_from_obj_file(fn, quantization_bits=8, recenter_mesh=True, remove_du=True):
vertices, faces = read_obj(fn)
# print(vertices.shape)
mesh_dict = process_mesh_ours(vertices, faces, quantization_bits=quantization_bits, recenter_mesh=recenter_mesh, remove_du=remove_du)
return mesh_dict
def process_mesh_list(vertices, faces, quantization_bits=8, recenter_mesh=True):
"""Process mesh vertices and faces."""
vertices = [cur_vert[:, [2, 0, 1]] for cur_vert in vertices]
tot_vertices = np.concatenate(vertices, axis=0) # center and scale of those vertices
vert_center = get_vertices_center(tot_vertices)
vert_scale = get_vertices_scale(tot_vertices)
processed_vertices, processed_faces = [], []
for cur_verts, cur_faces in zip(vertices, faces):
# print(f"current vertices: {cur_verts.shape}, faces: {len(cur_faces)}")
normalized_verts = (cur_verts - vert_center) / vert_scale
cur_processed_verts, cur_processed_faces, _ = quantize_process_mesh(
normalized_verts, cur_faces, quantization_bits=quantization_bits
)
processed_vertices.append(cur_processed_verts)
processed_faces.append(cur_processed_faces)
vertices, faces = merge_meshes(processed_vertices, processed_faces)
faces = flatten_faces(faces=faces)
# Discard degenerate meshes without faces.
return {
'vertices': vertices,
'faces': faces,
}
def plot_sampled_meshes(v_sample, f_sample, sv_mesh_folder, cur_step=0, predict_joint=True,):
if not os.path.exists(sv_mesh_folder):
os.mkdir(sv_mesh_folder)
part_vertex_samples = [v_sample['left'], v_sample['rgt']]
part_face_samples = [f_sample['left'], f_sample['rgt']]
tot_n_samples = part_vertex_samples[0]['vertices'].shape[0]
tot_n_part = 2
if predict_joint:
pred_dir = v_sample['joint_dir']
pred_pvp = v_sample['joint_pvp']
print("pred_dir", pred_dir.shape, pred_dir)
print("pred_pvp", pred_pvp.shape, pred_pvp)
else:
pred_pvp = np.zeros(shape=[tot_n_samples, 3], dtype=np.float32)
tot_mesh_list = []
for i_p, (cur_part_v_samples_np, cur_part_f_samples_np) in enumerate(zip(part_vertex_samples, part_face_samples)):
mesh_list = []
for i_n in range(tot_n_samples):
mesh_list.append(
{
'vertices': cur_part_v_samples_np['vertices'][i_n][:cur_part_v_samples_np['num_vertices'][i_n]],
'faces': unflatten_faces(
cur_part_f_samples_np['faces'][i_n][:cur_part_f_samples_np['num_face_indices'][i_n]])
}
)
tot_mesh_list.append(mesh_list)
# and write this obj file?
# write_obj(vertices, faces, file_path, transpose=True, scale=1.):
# write mesh objs
for i_n in range(tot_n_samples):
cur_mesh = mesh_list[i_n]
cur_mesh_vertices, cur_mesh_faces = cur_mesh['vertices'], cur_mesh['faces']
cur_mesh_sv_fn = os.path.join("./meshes", f"training_step_{cur_step}_part_{i_p}_ins_{i_n}.obj")
if cur_mesh_vertices.shape[0] > 0 and len(cur_mesh_faces) > 0:
write_obj(cur_mesh_vertices, cur_mesh_faces, cur_mesh_sv_fn, transpose=False, scale=1.)
###### plot mesh (predicted) ######
tot_samples_mesh_dict = []
for i_s in range(tot_n_samples):
cur_s_tot_vertices = []
cur_s_tot_faces = []
cur_s_n_vertices = 0
for i_p in range(tot_n_part):
cur_s_cur_part_mesh_dict = tot_mesh_list[i_p][i_s]
cur_s_cur_part_vertices, cur_s_cur_part_faces = cur_s_cur_part_mesh_dict['vertices'], \
cur_s_cur_part_mesh_dict['faces']
cur_s_cur_part_new_faces = []
for cur_s_cur_part_cur_face in cur_s_cur_part_faces:
cur_s_cur_part_cur_new_face = [fid + cur_s_n_vertices for fid in cur_s_cur_part_cur_face]
cur_s_cur_part_new_faces.append(cur_s_cur_part_cur_new_face)
cur_s_n_vertices += cur_s_cur_part_vertices.shape[0]
cur_s_tot_vertices.append(cur_s_cur_part_vertices)
cur_s_tot_faces += cur_s_cur_part_new_faces
cur_s_tot_vertices = np.concatenate(cur_s_tot_vertices, axis=0)
cur_s_mesh_dict = {
'vertices': cur_s_tot_vertices, 'faces': cur_s_tot_faces
}
tot_samples_mesh_dict.append(cur_s_mesh_dict)
for i_s in range(tot_n_samples):
cur_mesh = tot_samples_mesh_dict[i_s]
cur_mesh_vertices, cur_mesh_faces = cur_mesh['vertices'], cur_mesh['faces']
cur_mesh_sv_fn = os.path.join(sv_mesh_folder, f"training_step_{cur_step}_ins_{i_s}.obj")
if cur_mesh_vertices.shape[0] > 0 and len(cur_mesh_faces) > 0:
write_obj(cur_mesh_vertices, cur_mesh_faces, cur_mesh_sv_fn, transpose=False, scale=1.)
###### plot mesh (predicted) ######
###### plot mesh (translated) ######
tot_samples_mesh_dict = []
for i_s in range(tot_n_samples):
cur_s_tot_vertices = []
cur_s_tot_faces = []
cur_s_n_vertices = 0
cur_s_pred_pvp = pred_pvp[i_s]
for i_p in range(tot_n_part):
cur_s_cur_part_mesh_dict = tot_mesh_list[i_p][i_s]
cur_s_cur_part_vertices, cur_s_cur_part_faces = cur_s_cur_part_mesh_dict['vertices'], \
cur_s_cur_part_mesh_dict['faces']
cur_s_cur_part_new_faces = []
for cur_s_cur_part_cur_face in cur_s_cur_part_faces:
cur_s_cur_part_cur_new_face = [fid + cur_s_n_vertices for fid in cur_s_cur_part_cur_face]
cur_s_cur_part_new_faces.append(cur_s_cur_part_cur_new_face)
cur_s_n_vertices += cur_s_cur_part_vertices.shape[0]
if i_p == 1:
# min_rngs = cur_s_cur_part_vertices.min(1)
# max_rngs = cur_s_cur_part_vertices.max(1)
min_rngs = cur_s_cur_part_vertices.min(0)
max_rngs = cur_s_cur_part_vertices.max(0)
# shifted; cur_s_pred_pvp
# shifted = np.array([0., cur_s_pred_pvp[1] - max_rngs[1], cur_s_pred_pvp[2] - min_rngs[2]], dtype=np.float)
# shifted = np.reshape(shifted, [1, 3]) #
cur_s_pred_pvp = np.array([0., max_rngs[1], min_rngs[2]], dtype=np.float32)
pvp_sample_pred_err = np.sum((cur_s_pred_pvp - pred_pvp[i_s]) ** 2)
# print prediction err, pred pvp and real pvp
# print("cur_s, sample_pred_pvp_err:", pvp_sample_pred_err.item(), ";real val:", cur_s_pred_pvp, "; pred_val:", pred_pvp[i_s])
pred_pvp[i_s] = cur_s_pred_pvp
shifted = np.zeros((1, 3), dtype=np.float32)
cur_s_cur_part_vertices = cur_s_cur_part_vertices + shifted # shift vertices... # min_rngs
# shifted
cur_s_tot_vertices.append(cur_s_cur_part_vertices)
cur_s_tot_faces += cur_s_cur_part_new_faces
cur_s_tot_vertices = np.concatenate(cur_s_tot_vertices, axis=0)
cur_s_mesh_dict = {
'vertices': cur_s_tot_vertices, 'faces': cur_s_tot_faces
}
tot_samples_mesh_dict.append(cur_s_mesh_dict)
for i_s in range(tot_n_samples):
cur_mesh = tot_samples_mesh_dict[i_s]
cur_mesh_vertices, cur_mesh_faces = cur_mesh['vertices'], cur_mesh['faces']
cur_mesh_sv_fn = os.path.join(sv_mesh_folder, f"training_step_{cur_step}_ins_{i_s}_shifted.obj")
if cur_mesh_vertices.shape[0] > 0 and len(cur_mesh_faces) > 0:
write_obj(cur_mesh_vertices, cur_mesh_faces, cur_mesh_sv_fn, transpose=False, scale=1.)
###### plot mesh (translated) ######
###### plot mesh (rotated) ######
if predict_joint:
from revolute_transform import revoluteTransform
tot_samples_mesh_dict = []
for i_s in range(tot_n_samples):
cur_s_tot_vertices = []
cur_s_tot_faces = []
cur_s_n_vertices = 0
# cur_s_pred_dir = pred_dir[i_s]
cur_s_pred_pvp = pred_pvp[i_s]
print("current pred dir:", cur_s_pred_dir, "; current pred pvp:", cur_s_pred_pvp)
cur_s_pred_dir = np.array([1.0, 0.0, 0.0], dtype=np.float)
# cur_s_pred_pvp = cur_s_pred_pvp[[1, 2, 0]]
for i_p in range(tot_n_part):
cur_s_cur_part_mesh_dict = tot_mesh_list[i_p][i_s]
cur_s_cur_part_vertices, cur_s_cur_part_faces = cur_s_cur_part_mesh_dict['vertices'], \
cur_s_cur_part_mesh_dict['faces']
if i_p == 1:
cur_s_cur_part_vertices, _ = revoluteTransform(cur_s_cur_part_vertices, cur_s_pred_pvp, cur_s_pred_dir, 0.5 * np.pi) # reverse revolute vertices of the upper piece
cur_s_cur_part_vertices = cur_s_cur_part_vertices[:, :3] #
cur_s_cur_part_new_faces = []
for cur_s_cur_part_cur_face in cur_s_cur_part_faces:
cur_s_cur_part_cur_new_face = [fid + cur_s_n_vertices for fid in cur_s_cur_part_cur_face]
cur_s_cur_part_new_faces.append(cur_s_cur_part_cur_new_face)
cur_s_n_vertices += cur_s_cur_part_vertices.shape[0]
cur_s_tot_vertices.append(cur_s_cur_part_vertices)
# print(f"i_s: {i_s}, i_p: {i_p}, n_vertices: {cur_s_cur_part_vertices.shape[0]}")
cur_s_tot_faces += cur_s_cur_part_new_faces
cur_s_tot_vertices = np.concatenate(cur_s_tot_vertices, axis=0)
# print(f"i_s: {i_s}, n_cur_s_tot_vertices: {cur_s_tot_vertices.shape[0]}")
cur_s_mesh_dict = {
'vertices': cur_s_tot_vertices, 'faces': cur_s_tot_faces
}
tot_samples_mesh_dict.append(cur_s_mesh_dict)
# plot_meshes(tot_samples_mesh_dict, ax_lims=0.5, mesh_sv_fn=f"./figs/training_step_{n}_part_{tot_n_part}_rot.png") # plot the mesh;
for i_s in range(tot_n_samples):
cur_mesh = tot_samples_mesh_dict[i_s]
cur_mesh_vertices, cur_mesh_faces = cur_mesh['vertices'], cur_mesh['faces']
# rotated mesh fn
cur_mesh_sv_fn = os.path.join(sv_mesh_folder, f"training_step_{cur_step}_ins_{i_s}_rot.obj")
# write object in the file...
if cur_mesh_vertices.shape[0] > 0 and len(cur_mesh_faces) > 0:
write_obj(cur_mesh_vertices, cur_mesh_faces, cur_mesh_sv_fn, transpose=False, scale=1.)
def sample_pts_from_mesh(vertices, faces, npoints=512, minus_one=True):
return vertices
sampled_pcts = []
pts_to_seg_idx = []
# triangles and pts
minus_val = 0 if not minus_one else 1
for i in range(len(faces)): #
cur_face = faces[i]
n_tris = len(cur_face) - 2
v_as, v_bs, v_cs = [cur_face[0] for _ in range(n_tris)], cur_face[1: len(cur_face) - 1], cur_face[2: len(cur_face)]
for v_a, v_b, v_c in zip(v_as, v_bs, v_cs):
v_a, v_b, v_c = vertices[v_a - minus_val], vertices[v_b - minus_val], vertices[v_c - minus_val]
ab, ac = v_b - v_a, v_c - v_a
cos_ab_ac = (np.sum(ab * ac) / np.clip(np.sqrt(np.sum(ab ** 2)) * np.sqrt(np.sum(ac ** 2)), a_min=1e-9,
a_max=9999999.)).item()
sin_ab_ac = math.sqrt(min(max(0., 1. - cos_ab_ac ** 2), 1.))
cur_area = 0.5 * sin_ab_ac * np.sqrt(np.sum(ab ** 2)).item() * np.sqrt(np.sum(ac ** 2)).item()
cur_sampled_pts = int(cur_area * npoints)
cur_sampled_pts = 1 if cur_sampled_pts == 0 else cur_sampled_pts
# if cur_sampled_pts == 0:
tmp_x, tmp_y = np.random.uniform(0, 1., (cur_sampled_pts,)).tolist(), np.random.uniform(0., 1., (
cur_sampled_pts,)).tolist()
for xx, yy in zip(tmp_x, tmp_y):
sqrt_xx, sqrt_yy = math.sqrt(xx), math.sqrt(yy)
aa = 1. - sqrt_xx
bb = sqrt_xx * (1. - yy)
cc = yy * sqrt_xx
cur_pos = v_a * aa + v_b * bb + v_c * cc
sampled_pcts.append(cur_pos)
# pts_to_seg_idx.append(cur_tri_seg)
# seg_idx_to_sampled_pts = {}
sampled_pcts = np.array(sampled_pcts, dtype=np.float)
return sampled_pcts
def fps_fr_numpy(np_pts, n_sampling=4096):
pts = torch.from_numpy(np_pts).float().cuda()
pts_fps_idx = farthest_point_sampling(pts.unsqueeze(0), n_sampling=n_sampling) # farthes points sampling ##
pts = pts[pts_fps_idx].cpu()
return pts
def farthest_point_sampling(pos: torch.FloatTensor, n_sampling: int):
bz, N = pos.size(0), pos.size(1)
feat_dim = pos.size(-1)
device = pos.device
sampling_ratio = float(n_sampling / N)
pos_float = pos.float()
batch = torch.arange(bz, dtype=torch.long).view(bz, 1).to(device)
mult_one = torch.ones((N,), dtype=torch.long).view(1, N).to(device)
batch = batch * mult_one
batch = batch.view(-1)
pos_float = pos_float.contiguous().view(-1, feat_dim).contiguous() # (bz x N, 3)
# sampling_ratio = torch.tensor([sampling_ratio for _ in range(bz)], dtype=torch.float).to(device)
# batch = torch.zeros((N, ), dtype=torch.long, device=device)
sampled_idx = fps(pos_float, batch, ratio=sampling_ratio, random_start=False)
# shape of sampled_idx?
return sampled_idx
def plot_sampled_meshes_single_part(v_sample, f_sample, sv_mesh_folder, cur_step=0, predict_joint=True,):
if not os.path.exists(sv_mesh_folder):
os.mkdir(sv_mesh_folder)
part_vertex_samples = [v_sample]
part_face_samples = [f_sample]
tot_n_samples = part_vertex_samples[0]['vertices'].shape[0]
tot_n_part = 2
# not predict joints here
# if predict_joint:
# pred_dir = v_sample['joint_dir']
# pred_pvp = v_sample['joint_pvp']
# print("pred_dir", pred_dir.shape, pred_dir)
# print("pred_pvp", pred_pvp.shape, pred_pvp)
# else:
# pred_pvp = np.zeros(shape=[tot_n_samples, 3], dtype=np.float32)
tot_mesh_list = []
for i_p, (cur_part_v_samples_np, cur_part_f_samples_np) in enumerate(zip(part_vertex_samples, part_face_samples)):
mesh_list = []
for i_n in range(tot_n_samples):
mesh_list.append(
{
'vertices': cur_part_v_samples_np['vertices'][i_n][:cur_part_v_samples_np['num_vertices'][i_n]],
'faces': unflatten_faces(
cur_part_f_samples_np['faces'][i_n][:cur_part_f_samples_np['num_face_indices'][i_n]])
}
)
tot_mesh_list.append(mesh_list)
for i_n in range(tot_n_samples):
cur_mesh = mesh_list[i_n]
cur_mesh_vertices, cur_mesh_faces = cur_mesh['vertices'], cur_mesh['faces']
# cur_mesh_sv_fn = os.path.join("./meshes", f"training_step_{cur_step}_part_{i_p}_ins_{i_n}.obj")
cur_mesh_sv_fn = os.path.join(sv_mesh_folder, f"training_step_{cur_step}_part_{i_p}_ins_{i_n}.obj")
print(f"saving to {cur_mesh_sv_fn}, nn_verts: {cur_mesh_vertices.shape[0]}, nn_faces: {len(cur_mesh_faces)}")
if cur_mesh_vertices.shape[0] > 0 and len(cur_mesh_faces) > 0:
write_obj(cur_mesh_vertices, cur_mesh_faces, cur_mesh_sv_fn, transpose=True, scale=1.)
def plot_sampled_meshes(v_sample, f_sample, sv_mesh_folder, cur_step=0, predict_joint=True,):
if not os.path.exists(sv_mesh_folder):
os.mkdir(sv_mesh_folder)
part_vertex_samples = [v_sample]
part_face_samples = [f_sample]
tot_n_samples = part_vertex_samples[0]['vertices'].shape[0]
# tot_n_part = 2
# not predict joints here
# if predict_joint:
# pred_dir = v_sample['joint_dir']
# pred_pvp = v_sample['joint_pvp']
# print("pred_dir", pred_dir.shape, pred_dir)
# print("pred_pvp", pred_pvp.shape, pred_pvp)
# else:
# pred_pvp = np.zeros(shape=[tot_n_samples, 3], dtype=np.float32)
tot_mesh_list = []
for i_p, (cur_part_v_samples_np, cur_part_f_samples_np) in enumerate(zip(part_vertex_samples, part_face_samples)):
mesh_list = []
for i_n in range(tot_n_samples):
mesh_list.append(
{
'vertices': cur_part_v_samples_np['vertices'][i_n][:cur_part_v_samples_np['num_vertices'][i_n]],
'faces': unflatten_faces(
cur_part_f_samples_np['faces'][i_n][:cur_part_f_samples_np['num_face_indices'][i_n]])
}
)
tot_mesh_list.append(mesh_list)
for i_n in range(tot_n_samples):
cur_mesh = mesh_list[i_n]
cur_mesh_vertices, cur_mesh_faces = cur_mesh['vertices'], cur_mesh['faces']
# cur_mesh_sv_fn = os.path.join("./meshes", f"training_step_{cur_step}_part_{i_p}_ins_{i_n}.obj")
cur_mesh_sv_fn = os.path.join(sv_mesh_folder, f"training_step_{cur_step}_part_{i_p}_ins_{i_n}.obj")
print(f"saving to {cur_mesh_sv_fn}, nn_verts: {cur_mesh_vertices.shape[0]}, nn_faces: {len(cur_mesh_faces)}")
if cur_mesh_vertices.shape[0] > 0 and len(cur_mesh_faces) > 0:
write_obj(cur_mesh_vertices, cur_mesh_faces, cur_mesh_sv_fn, transpose=True, scale=1.)
def filter_masked_vertices(vertices, mask_indicator):
# vertices: n_verts x 3
mask_indicator = np.reshape(mask_indicator, (vertices.shape[0], 3))
tot_vertices = []
for i_v in range(vertices.shape[0]):
cur_vert = vertices[i_v]
cur_vert_indicator = mask_indicator[i_v][0].item()
if cur_vert_indicator < 0.5:
tot_vertices.append(cur_vert)
tot_vertices = np.array(tot_vertices)
return tot_vertices
def plot_sampled_ar_subd_meshes(v_sample, f_sample, sv_mesh_folder, cur_step=0, ):
if not os.path.exists(sv_mesh_folder): ### vertices_mask
os.mkdir(sv_mesh_folder)
### v_sample: bsz x nn_verts x 3
vertices_mask = v_sample['vertices_mask']
vertices = v_sample['vertices']
faces = f_sample['faces']
num_face_indices = f_sample['num_face_indices'] #### num_faces_indices
bsz = vertices.shape[0]
for i_bsz in range(bsz):
cur_vertices = vertices[i_bsz]
cur_vertices_mask = vertices_mask[i_bsz]
cur_faces = faces[i_bsz]
cur_num_face_indices = num_face_indices[i_bsz]
cur_nn_verts = cur_vertices_mask.sum(-1).item()
cur_nn_verts = int(cur_nn_verts)
cur_vertices = cur_vertices[:cur_nn_verts]
cur_faces = unflatten_faces(
cur_faces[:int(cur_num_face_indices)])
cur_num_faces = len(cur_faces)
cur_mesh_sv_fn = os.path.join(sv_mesh_folder, f"training_step_{cur_step}_inst_{i_bsz}.obj")
# cur_context_mesh_sv_fn = os.path.join(sv_mesh_folder, f"training_step_{cur_step}_part_{i_p}_ins_{i_n}_context.obj")
print(f"saving to {cur_mesh_sv_fn}, nn_verts: {cur_nn_verts}, nn_faces: {cur_num_faces}")
if cur_nn_verts > 0 and cur_num_faces > 0:
write_obj(cur_vertices, cur_faces, cur_mesh_sv_fn, transpose=True, scale=1.)
def plot_sampled_meshes_single_part_for_pretraining(v_sample, f_sample, context, sv_mesh_folder, cur_step=0, predict_joint=True, with_context=True):
if not os.path.exists(sv_mesh_folder):
os.mkdir(sv_mesh_folder)
part_vertex_samples = [v_sample]
part_face_samples = [f_sample]
context_vertices = [context['vertices']]
context_faces = [context['faces']]
context_vertices_mask = [context['vertices_mask']]
context_faces_mask = [context['faces_mask']]
tot_n_samples = part_vertex_samples[0]['vertices'].shape[0]
tot_n_part = 2
# not predict joints here
# if predict_joint:
# pred_dir = v_sample['joint_dir']
# pred_pvp = v_sample['joint_pvp']
# print("pred_dir", pred_dir.shape, pred_dir)
# print("pred_pvp", pred_pvp.shape, pred_pvp)
# else:
# pred_pvp = np.zeros(shape=[tot_n_samples, 3], dtype=np.float32)
#
tot_mesh_list = []
for i_p, (cur_part_v_samples_np, cur_part_f_samples_np) in enumerate(zip(part_vertex_samples, part_face_samples)):
mesh_list = []
context_mesh_list = []
for i_n in range(tot_n_samples):
mesh_list.append(
{
'vertices': cur_part_v_samples_np['vertices'][i_n][:cur_part_v_samples_np['num_vertices'][i_n]],
'faces': unflatten_faces(
cur_part_f_samples_np['faces'][i_n][:cur_part_f_samples_np['num_face_indices'][i_n]])
}
)
cur_context_vertices = context_vertices[i_p][i_n]
cur_context_faces = context_faces[i_p][i_n]
cur_context_vertices_mask = context_vertices_mask[i_p][i_n]
cur_context_faces_mask = context_faces_mask[i_p][i_n]
cur_nn_vertices = np.sum(cur_context_vertices_mask).item()
cur_nn_faces = np.sum(cur_context_faces_mask).item()
cur_nn_vertices, cur_nn_faces = int(cur_nn_vertices), int(cur_nn_faces)
cur_context_vertices = cur_context_vertices[:cur_nn_vertices]
if 'mask_vertices_flat_indicator' in context:
cur_context_vertices_mask_indicator = context['mask_vertices_flat_indicator'][i_n]
cur_context_vertices_mask_indicator = cur_context_vertices_mask_indicator[:cur_nn_vertices * 3]
cur_context_vertices = filter_masked_vertices(cur_context_vertices, cur_context_vertices_mask_indicator)
cur_context_faces = cur_context_faces[:cur_nn_faces] # context faces...
context_mesh_dict = {
'vertices': dequantize_verts(cur_context_vertices, n_bits=8), 'faces': unflatten_faces(cur_context_faces)
}
context_mesh_list.append(context_mesh_dict)
tot_mesh_list.append(mesh_list)
# if with_context:
for i_n in range(tot_n_samples):
cur_mesh = mesh_list[i_n]
cur_context_mesh = context_mesh_list[i_n]
cur_mesh_vertices, cur_mesh_faces = cur_mesh['vertices'], cur_mesh['faces']
cur_context_vertices, cur_context_faces = cur_context_mesh['vertices'], cur_context_mesh['faces']
# cur_mesh_sv_fn = os.path.join("./meshes", f"training_step_{cur_step}_part_{i_p}_ins_{i_n}.obj")
cur_mesh_sv_fn = os.path.join(sv_mesh_folder, f"training_step_{cur_step}_part_{i_p}_ins_{i_n}.obj")
cur_context_mesh_sv_fn = os.path.join(sv_mesh_folder, f"training_step_{cur_step}_part_{i_p}_ins_{i_n}_context.obj")
print(f"saving to {cur_mesh_sv_fn}, nn_verts: {cur_mesh_vertices.shape[0]}, nn_faces: {len(cur_mesh_faces)}")
if cur_mesh_vertices.shape[0] > 0 and len(cur_mesh_faces) > 0:
write_obj(cur_mesh_vertices, cur_mesh_faces, cur_mesh_sv_fn, transpose=True, scale=1.)
if cur_context_vertices.shape[0] > 0 and len(cur_context_faces) > 0:
write_obj(cur_context_vertices, cur_context_faces, cur_context_mesh_sv_fn, transpose=True, scale=1.)
def plot_grids_for_pretraining_ml(v_sample, sv_mesh_folder="", cur_step=0, context=None):
if not os.path.exists(sv_mesh_folder):
os.mkdir(sv_mesh_folder)
mesh_list = []
context_mesh_list = []
tot_n_samples = v_sample['vertices'].shape[0]
for i_n in range(tot_n_samples):
mesh_list.append(
{
'vertices': v_sample['vertices'][i_n][:v_sample['num_vertices'][i_n]],
'faces': []
}
)
cur_context_vertices = context['vertices'][i_n]
cur_context_vertices_mask = context['vertices_mask'][i_n]
cur_nn_vertices = np.sum(cur_context_vertices_mask).item()
cur_nn_vertices = int(cur_nn_vertices)
cur_context_vertices = cur_context_vertices[:cur_nn_vertices]
if 'mask_vertices_flat_indicator' in context:
cur_context_vertices_mask_indicator = context['mask_vertices_flat_indicator'][i_n]
cur_context_vertices_mask_indicator = cur_context_vertices_mask_indicator[:cur_nn_vertices * 3]
cur_context_vertices = filter_masked_vertices(cur_context_vertices, cur_context_vertices_mask_indicator)
context_mesh_dict = {
'vertices': dequantize_verts(cur_context_vertices, n_bits=8), 'faces': []
}
context_mesh_list.append(context_mesh_dict)
# tot_mesh_list.append(mesh_list)
# if with_context:
for i_n in range(tot_n_samples):
cur_mesh = mesh_list[i_n]
cur_context_mesh = context_mesh_list[i_n]
cur_mesh_vertices = cur_mesh['vertices']
cur_context_vertices = cur_context_mesh['vertices']
# cur_mesh_sv_fn = os.path.join("./meshes", f"training_step_{cur_step}_part_{i_p}_ins_{i_n}.obj")
cur_mesh_sv_fn = os.path.join(sv_mesh_folder, f"training_step_{cur_step}_ins_{i_n}.obj")
cur_context_mesh_sv_fn = os.path.join(sv_mesh_folder, f"training_step_{cur_step}_ins_{i_n}_context.obj")
# print(f"saving to {cur_mesh_sv_fn}, nn_verts: {cur_mesh_vertices.shape[0]}, nn_faces: {len(cur_mesh_faces)}")
print(f"saving the sample to {cur_mesh_sv_fn}, context sample to {cur_context_mesh_sv_fn}")
if cur_mesh_vertices.shape[0] > 0:
write_obj(cur_mesh_vertices, None, cur_mesh_sv_fn, transpose=True, scale=1.)
if cur_context_vertices.shape[0] > 0:
write_obj(cur_context_vertices, None, cur_context_mesh_sv_fn, transpose=True, scale=1.)
def get_grid_content_from_grids(grid_xyzs, grid_values, grid_size=2):
cur_bsz_grid_xyzs = grid_xyzs # grid_length x 3 # grids pts for a sinlge batch
cur_bsz_grid_values = grid_values # grid_length x gs x gs x gs
pts = []
for i_grid in range(cur_bsz_grid_xyzs.shape[0]): # cur_bsz_grid_xyzs
cur_grid_xyz = cur_bsz_grid_xyzs[i_grid].tolist()
if cur_grid_xyz[0] == -1 or cur_grid_xyz[1] == -1 or cur_grid_xyz[2] == -1:
break
if len(cur_bsz_grid_values.shape) > 1:
cur_grid_values = cur_bsz_grid_values[i_grid]
else:
cur_grid_content = cur_bsz_grid_values[i_grid].item()
if cur_grid_content >= MASK_GRID_VALIE:
continue
inde = 2
cur_grid_values = []
for i_s in range(grid_size ** 3):
cur_mod_value = cur_grid_content % inde
cur_grid_content = cur_grid_content // inde
cur_grid_values = [cur_mod_value] + cur_grid_values # higher values should be put to the front of the list
cur_grid_values = np.array(cur_grid_values, dtype=np.long)
cur_grid_values = np.reshape(cur_grid_values, (grid_size, grid_size, grid_size))
# if words
# flip words
for i_x in range(cur_grid_values.shape[0]):
for i_y in range(cur_grid_values.shape[1]):
for i_z in range(cur_grid_values.shape[2]):
cur_grid_xyz_value = int(cur_grid_values[i_x, i_y, i_z].item())
if cur_grid_xyz_value > 0.5:
cur_x, cur_y, cur_z = cur_grid_xyz[0] * grid_size + i_x, cur_grid_xyz[1] * grid_size + i_y, cur_grid_xyz[2] * grid_size + i_z
pts.append([cur_x, cur_y, cur_z])
return pts
def plot_grids_for_pretraining(v_sample, sv_mesh_folder="", cur_step=0, context=None, sv_mesh_fn=None):
##### plot grids
if not os.path.exists(sv_mesh_folder):
os.mkdir(sv_mesh_folder)
# part_vertex_samples = [v_sample] # vertex samples
# part_face_samples = [f_sample] # face samples
grid_xyzs = v_sample['grid_xyzs']
grid_values = v_sample['grid_values']
bsz = grid_xyzs.shape[0]
grid_size = opt.vertex_model.grid_size
for i_bsz in range(bsz):
cur_bsz_grid_xyzs = grid_xyzs[i_bsz] # grid_length x 3
cur_bsz_grid_values = grid_values[i_bsz] # grid_length x gs x gs x gs
pts = []
for i_grid in range(cur_bsz_grid_xyzs.shape[0]): # cur_bsz_grid_xyzs
cur_grid_xyz = cur_bsz_grid_xyzs[i_grid].tolist()
if cur_grid_xyz[0] == -1 or cur_grid_xyz[1] == -1 or cur_grid_xyz[2] == -1:
break
if len(cur_bsz_grid_values.shape) > 1:
cur_grid_values = cur_bsz_grid_values[i_grid]
else:
cur_grid_content = cur_bsz_grid_values[i_grid].item()
if cur_grid_content >= MASK_GRID_VALIE:
continue
inde = 2
cur_grid_values = []
for i_s in range(grid_size ** 3):
cur_mod_value = cur_grid_content % inde
cur_grid_content = cur_grid_content // inde
cur_grid_values = [cur_mod_value] + cur_grid_values # higher values should be put to the front of the list
cur_grid_values = np.array(cur_grid_values, dtype=np.long)
cur_grid_values = np.reshape(cur_grid_values, (grid_size, grid_size, grid_size))
# if
for i_x in range(cur_grid_values.shape[0]):
for i_y in range(cur_grid_values.shape[1]):
for i_z in range(cur_grid_values.shape[2]):
cur_grid_xyz_value = int(cur_grid_values[i_x, i_y, i_z].item())
if cur_grid_xyz_value > 0.5:
cur_x, cur_y, cur_z = cur_grid_xyz[0] * grid_size + i_x, cur_grid_xyz[1] * grid_size + i_y, cur_grid_xyz[2] * grid_size + i_z
pts.append([cur_x, cur_y, cur_z])
if len(pts) == 0:
print("zzz, len(pts) == 0")
continue
pts = np.array(pts, dtype=np.float32)
# pts = center_vertices(pts)
# pts = normalize_vertices_scale(pts)
pts = pts[:, [2, 1, 0]]
cur_mesh_sv_fn = os.path.join(sv_mesh_folder, f"training_step_{cur_step}_ins_{i_bsz}.obj" if sv_mesh_fn is None else sv_mesh_fn)
print(f"Saving obj to {cur_mesh_sv_fn}")
write_obj(pts, None, cur_mesh_sv_fn, transpose=True, scale=1.)
def plot_grids_for_pretraining_obj_corpus(v_sample, sv_mesh_folder="", cur_step=0, context=None, sv_mesh_fn=None):
##### plot grids
if not os.path.exists(sv_mesh_folder):
os.mkdir(sv_mesh_folder)
# part_vertex_samples = [v_sample] # vertex samples
# part_face_samples = [f_sample] # face samples
grid_xyzs = v_sample['grid_xyzs']
grid_values = v_sample['grid_values']
bsz = grid_xyzs.shape[0]
grid_size = opt.vertex_model.grid_size
for i_bsz in range(bsz):
cur_bsz_grid_xyzs = grid_xyzs[i_bsz] # grid_length x 3
cur_bsz_grid_values = grid_values[i_bsz] # grid_length x gs x gs x gs
part_pts = []
pts = []
for i_grid in range(cur_bsz_grid_xyzs.shape[0]): # cur_bsz_grid_xyzs
cur_grid_xyz = cur_bsz_grid_xyzs[i_grid].tolist()
##### grid_xyz; grid_
if cur_grid_xyz[0] == -1 and cur_grid_xyz[1] == -1 and cur_grid_xyz[2] == -1:
part_pts.append(pts)
pts = []
continue
##### cur_grid_xyz... #####
elif not (cur_grid_xyz[0] >= 0 and cur_grid_xyz[1] >= 0 and cur_grid_xyz[2] >= 0):
continue
if len(cur_bsz_grid_values.shape) > 1:
cur_grid_values = cur_bsz_grid_values[i_grid]
else:
cur_grid_content = cur_bsz_grid_values[i_grid].item()
if cur_grid_content >= MASK_GRID_VALIE: # mask grid value
continue
inde = 2
cur_grid_values = []
for i_s in range(grid_size ** 3):
cur_mod_value = cur_grid_content % inde
cur_grid_content = cur_grid_content // inde
cur_grid_values = [cur_mod_value] + cur_grid_values # higher values should be put to the front of the list
cur_grid_values = np.array(cur_grid_values, dtype=np.long)
cur_grid_values = np.reshape(cur_grid_values, (grid_size, grid_size, grid_size))
# if
for i_x in range(cur_grid_values.shape[0]):
for i_y in range(cur_grid_values.shape[1]):
for i_z in range(cur_grid_values.shape[2]):
cur_grid_xyz_value = int(cur_grid_values[i_x, i_y, i_z].item())
##### gird-xyz-values #####
if cur_grid_xyz_value > 0.5: # cur_grid_xyz_value
cur_x, cur_y, cur_z = cur_grid_xyz[0] * grid_size + i_x, cur_grid_xyz[1] * grid_size + i_y, cur_grid_xyz[2] * grid_size + i_z
pts.append([cur_x, cur_y, cur_z])
if len(pts) > 0:
part_pts.append(pts)
pts = []
tot_nn_pts = sum([len(aa) for aa in part_pts])
if tot_nn_pts == 0:
print("zzz, tot_nn_pts == 0")
continue
for i_p, pts in enumerate(part_pts):
if len(pts) == 0:
continue
pts = np.array(pts, dtype=np.float32)
pts = center_vertices(pts)
# pts = normalize_vertices_scale(pts)
pts = pts[:, [2, 1, 0]]
cur_mesh_sv_fn = os.path.join(sv_mesh_folder, f"training_step_{cur_step}_ins_{i_bsz}_ip_{i_p}.obj" if sv_mesh_fn is None else sv_mesh_fn)
print(f"Saving {i_p}-th part obj to {cur_mesh_sv_fn}")
write_obj(pts, None, cur_mesh_sv_fn, transpose=True, scale=1.)
def plot_grids_for_pretraining_obj_part(v_sample, sv_mesh_folder="", cur_step=0, context=None, sv_mesh_fn=None):
##### plot grids
if not os.path.exists(sv_mesh_folder):
os.mkdir(sv_mesh_folder)
# part_vertex_samples = [v_sample] # vertex samples
# part_face_samples = [f_sample] # face samples
grid_xyzs = v_sample['grid_xyzs']
grid_values = v_sample['grid_values']
bsz = grid_xyzs.shape[0]
grid_size = opt.vertex_model.grid_size
for i_bsz in range(bsz):
cur_bsz_grid_xyzs = grid_xyzs[i_bsz] # grid_length x 3
cur_bsz_grid_values = grid_values[i_bsz] # grid_length x gs x gs x gs
part_pts = []
pts = []
for i_grid in range(cur_bsz_grid_xyzs.shape[0]): # cur_bsz_grid_xyzs
cur_grid_xyz = cur_bsz_grid_xyzs[i_grid].tolist()
##### grid_xyz; grid_
if cur_grid_xyz[0] == -1 and cur_grid_xyz[1] == -1 and cur_grid_xyz[2] == -1:
part_pts.append(pts)
pts = []
break
elif cur_grid_xyz[0] == -1 and cur_grid_xyz[1] == -1 and cur_grid_xyz[2] == 0:
part_pts.append(pts)
pts = []
continue
##### cur_grid_xyz... #####
elif not (cur_grid_xyz[0] >= 0 and cur_grid_xyz[1] >= 0 and cur_grid_xyz[2] >= 0):
continue
if len(cur_bsz_grid_values.shape) > 1:
cur_grid_values = cur_bsz_grid_values[i_grid]
else:
cur_grid_content = cur_bsz_grid_values[i_grid].item()
if cur_grid_content >= MASK_GRID_VALIE: # invalid jor dummy content value s
continue
inde = 2
cur_grid_values = []
for i_s in range(grid_size ** 3):
cur_mod_value = cur_grid_content % inde
cur_grid_content = cur_grid_content // inde
cur_grid_values = [cur_mod_value] + cur_grid_values # higher values should be put to the front of the list
cur_grid_values = np.array(cur_grid_values, dtype=np.long)
cur_grid_values = np.reshape(cur_grid_values, (grid_size, grid_size, grid_size))
# if
for i_x in range(cur_grid_values.shape[0]):
for i_y in range(cur_grid_values.shape[1]):
for i_z in range(cur_grid_values.shape[2]):
cur_grid_xyz_value = int(cur_grid_values[i_x, i_y, i_z].item())
##### gird-xyz-values #####
if cur_grid_xyz_value > 0.5: # cur_grid_xyz_value
cur_x, cur_y, cur_z = cur_grid_xyz[0] * grid_size + i_x, cur_grid_xyz[1] * grid_size + i_y, cur_grid_xyz[2] * grid_size + i_z
pts.append([cur_x, cur_y, cur_z])
if len(pts) > 0:
part_pts.append(pts)
pts = []
tot_nn_pts = sum([len(aa) for aa in part_pts])
if tot_nn_pts == 0:
print("zzz, tot_nn_pts == 0")
continue
for i_p, pts in enumerate(part_pts):
if len(pts) == 0:
continue
pts = np.array(pts, dtype=np.float32)
pts = center_vertices(pts)
# pts = normalize_vertices_scale(pts)
pts = pts[:, [2, 1, 0]]
cur_mesh_sv_fn = os.path.join(sv_mesh_folder, f"training_step_{cur_step}_ins_{i_bsz}_ip_{i_p}.obj" if sv_mesh_fn is None else sv_mesh_fn)
print(f"Saving {i_p}-th part obj to {cur_mesh_sv_fn}")
write_obj(pts, None, cur_mesh_sv_fn, transpose=True, scale=1.)
def plot_grids_for_pretraining_ml(v_sample, sv_mesh_folder="", cur_step=0, context=None):
if not os.path.exists(sv_mesh_folder):
os.mkdir(sv_mesh_folder)
# part_vertex_samples = [v_sample] # vertex samples
# part_face_samples = [f_sample] # face samples
grid_xyzs = v_sample['grid_xyzs']
grid_values = v_sample['grid_values']
context_grid_xyzs = context['grid_xyzs'] - 1
# context_grid_values = context['grid_content']
context_grid_values = context['mask_grid_content']
bsz = grid_xyzs.shape[0]
grid_size = opt.vertex_model.grid_size
for i_bsz in range(bsz):
cur_bsz_grid_pts = get_grid_content_from_grids(grid_xyzs[i_bsz], grid_values[i_bsz], grid_size=grid_size)
cur_context_grid_pts = get_grid_content_from_grids(context_grid_xyzs[i_bsz], context_grid_values[i_bsz], grid_size=grid_size)
if len(cur_bsz_grid_pts) > 0 and len(cur_context_grid_pts) > 0:
cur_bsz_grid_pts = np.array(cur_bsz_grid_pts, dtype=np.float32)
cur_bsz_grid_pts = center_vertices(cur_bsz_grid_pts)
cur_bsz_grid_pts = normalize_vertices_scale(cur_bsz_grid_pts)
cur_bsz_grid_pts = cur_bsz_grid_pts[:, [2, 1, 0]]
#### plot current mesh / sampled points ####
cur_mesh_sv_fn = os.path.join(sv_mesh_folder, f"training_step_{cur_step}_ins_{i_bsz}.obj")
print(f"Saving predicted grid points to {cur_mesh_sv_fn}")
write_obj(cur_bsz_grid_pts, None, cur_mesh_sv_fn, transpose=True, scale=1.)
cur_context_grid_pts = np.array(cur_context_grid_pts, dtype=np.float32)
cur_context_grid_pts = center_vertices(cur_context_grid_pts)
cur_context_grid_pts = normalize_vertices_scale(cur_context_grid_pts)
cur_context_grid_pts = cur_context_grid_pts[:, [2, 1, 0]]
#### plot current mesh / sampled points ####
cur_context_mesh_sv_fn = os.path.join(sv_mesh_folder, f"training_step_{cur_step}_ins_{i_bsz}_context.obj")
print(f"Saving context grid points to {cur_context_mesh_sv_fn}")
write_obj(cur_context_grid_pts, None, cur_context_mesh_sv_fn, transpose=True, scale=1.)
# print(f"Saving obj to {cur_mesh_sv_fn}")
# write_obj(pts, None, cur_mesh_sv_fn, transpose=True, scale=1.)
# if len(cur_bsz_grid_pts) == 0:
# print("zzz, len(pts) == 0")
# continue
# pts = np.array(pts, dtype=np.float32)
# pts = center_vertices(pts)
# pts = normalize_vertices_scale(pts)
# pts = pts[:, [2, 1, 0]]
# cur_mesh_sv_fn = os.path.join(sv_mesh_folder, f"training_step_{cur_step}_ins_{i_bsz}.obj")
# print(f"Saving obj to {cur_mesh_sv_fn}")
# write_obj(pts, None, cur_mesh_sv_fn, transpose=True, scale=1.)
def plot_sampled_meshes_single_part_for_sampling(v_sample, f_sample, sv_mesh_folder, cur_step=0, predict_joint=True,):
if not os.path.exists(sv_mesh_folder):
os.mkdir(sv_mesh_folder)
part_vertex_samples = [v_sample]
part_face_samples = [f_sample]
tot_n_samples = part_vertex_samples[0]['vertices'].shape[0]
tot_n_part = 2
# not predict joints here
# if predict_joint:
# pred_dir = v_sample['joint_dir']
# pred_pvp = v_sample['joint_pvp']
# print("pred_dir", pred_dir.shape, pred_dir)
# print("pred_pvp", pred_pvp.shape, pred_pvp)
# else:
# pred_pvp = np.zeros(shape=[tot_n_samples, 3], dtype=np.float32)
tot_mesh_list = []
for i_p, (cur_part_v_samples_np, cur_part_f_samples_np) in enumerate(zip(part_vertex_samples, part_face_samples)):
mesh_list = []
for i_n in range(tot_n_samples):
mesh_list.append(
{
'vertices': cur_part_v_samples_np['vertices'][i_n][:cur_part_v_samples_np['num_vertices'][i_n]],
'faces': unflatten_faces(
cur_part_f_samples_np['faces'][i_n][:cur_part_f_samples_np['num_face_indices'][i_n]])
}
)
tot_mesh_list.append(mesh_list)
for i_n in range(tot_n_samples):
cur_mesh = mesh_list[i_n]
cur_mesh_vertices, cur_mesh_faces = cur_mesh['vertices'], cur_mesh['faces']
# cur_mesh_sv_fn = os.path.join("./meshes", f"training_step_{cur_step}_part_{i_p}_ins_{i_n}.obj")
cur_mesh_sv_fn = os.path.join(sv_mesh_folder, f"step_{cur_step}_part_{i_p}_ins_{i_n}.obj")
print(f"saving to {cur_mesh_sv_fn}, nn_verts: {cur_mesh_vertices.shape[0]}, nn_faces: {len(cur_mesh_faces)}")
if cur_mesh_vertices.shape[0] > 0 and len(cur_mesh_faces) > 0:
write_obj(cur_mesh_vertices, cur_mesh_faces, cur_mesh_sv_fn, transpose=True, scale=1.)
|