File size: 55,488 Bytes
d6d3a5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
import torch
import time
import numpy as np
import utils
# from common_utils import data_utils_torch as data_utils
# from common_utils.part_transform import revoluteTransform
# import random
import utils.model_util as model_util

# batched_index_select_ours


def get_random_rot_np():
  aa = np.random.randn(3)
  theta = np.sqrt(np.sum(aa**2))
  k = aa / np.maximum(theta, 1e-6)
  K = np.array([[0, -k[2], k[1]],
                [k[2], 0, -k[0]],
                [-k[1], k[0], 0]])
  R = np.eye(3) + np.sin(theta)*K + (1-np.cos(theta))*np.matmul(K, K)
  R = R.astype(np.float32)
  return R

def get_faces_from_verts(verts, faces, sel_verts_idxes, sel_faces=None):
  
  ### n_sel_faces x 3 x 3 --> 
  # sel_faces = []
  if not isinstance(sel_verts_idxes, list):
    sel_verts_idxes = sel_verts_idxes.tolist() 
  sel_verts_idxes_dict = {sel_idx : 1 for sel_idx in sel_verts_idxes}
  if sel_faces is None:
    sel_faces = []
    for i_f in range(faces.size(0)):
      cur_f = faces[i_f]
      va, vb, vc = cur_f.tolist()
      # va = va - 1
      # vb = vb - 1
      # vc = vc - 1
      if va  in sel_verts_idxes_dict or vb in sel_verts_idxes_dict or vc in sel_verts_idxes_dict:
        sel_faces.append(faces[i_f].tolist()) ### sel_faces items...
    # print(f"number of sel_faces: {len(sel_faces)}")
    sel_faces = torch.tensor(sel_faces, dtype=torch.long).cuda() ### n_sel_faces x 3 ## sel_
  # print(f"verts: {verts.size()}, max_sel_faces: {torch.max(sel_faces)}, min_sel_faces: {torch.min(sel_faces)}")
  sel_faces_vals = model_util.batched_index_select_ours(values=verts, indices=sel_faces, dim=0) ### self_faces_vals: n_sel_faces x 3 x 3 ### sel_fces_vals...
  return sel_faces, sel_faces_vals


def sel_faces_values_from_sel_faces(verts, sel_faces):
  sel_faces_vals = model_util.batched_index_select_ours(values=verts, indices=sel_faces, dim=0) #
  return sel_faces_vals

def get_sub_verts_faces_from_pts(verts, faces, pts, rt_sel_faces=False, minn_dist_pts_verts_idx=None, sel_faces=None):
  ### return tyep: sel_verts: n_pts x 3; sel_faces: faces selected from sel_verts ###
  ## verts: n_verts x 3; pts: n_pts x 3
  dis_pts_verts = torch.sum((pts.unsqueeze(1) - verts.unsqueeze(0)) ** 2, dim=-1) ### n_pts x n_verts ###
  if minn_dist_pts_verts_idx is None:
    minn_dist_pts_verts, minn_dist_pts_verts_idx = torch.min(dis_pts_verts, dim=-1) ###
  sel_verts = verts[minn_dist_pts_verts_idx] ### should be close to pts in the euclidean distance
  sel_faces, sel_faces_vals = get_faces_from_verts(verts, faces, minn_dist_pts_verts_idx, sel_faces=sel_faces) ### sel_faces_vals: n_sel_faces x 3 x 3
  if rt_sel_faces:
    return sel_verts, sel_faces, sel_faces_vals, minn_dist_pts_verts_idx
  else:
    return sel_verts, sel_faces_vals, minn_dist_pts_verts_idx

##### distance of each sel_vert in mesh_2 to each face in sel_faces in mesh_1 ##### ---> 

def get_faces_normals(faces_vals):
  ### faces_vals: n_faces x 3 x 3
  vas = faces_vals[:, 0, :]
  vbs = faces_vals[:, 1, :]
  vcs = faces_vals[:, 2, :]
  vabs = vbs - vas
  vacs = vcs - vas ### n_faces x 3
  vns = torch.cross(vabs, vacs) ### n_faces x 3 ---> cross product between two vectors
  vns = vns / torch.clamp(torch.norm(vns, dim=-1, p=2, keepdim=True), min=1e-6) ### vns: n_faces x 3
  return vns

### 

def get_distance_pts_faces(pts, faces_vals, faces_vns):
  ### faces_vals: n_faces x 3 x 3  ## 
  ### faces_vns: n_faces x 3
  ### ax + by + cz = d  ### one pts and another pts --> faces_vals --> faces_ds
  faces_ds = torch.sum(faces_vals[:, 0, :] * faces_vns, dim=-1) ## n_faces x 3 xxx n_faces x 3 --> n_faces
  ### distance from one point to another point ###
  ### pts: n_pts x 3; faces_vns: n_faces x 3
  faces_pts_ds = torch.sum(pts.unsqueeze(1) * faces_vns.unsqueeze(0), dim=-1) ### n_pts x n_faces ### ### negative distances --> 
  delta_faces_pts_ds = faces_pts_ds - faces_ds.unsqueeze(0) ### n_pts x n_faces ### ### as an distance vector is pts can be projected to the faces ### pts_ds; 
  ### 1 x n_faces x 3 xxxxxx n_pts x n_faces x 1 --> n_pts x n_faces x 3
  projected_pts = pts.unsqueeze(1) - faces_vns.unsqueeze(0) * delta_faces_pts_ds.unsqueeze(-1)
  
  ### n_faces x 3 x 3
  ### vab vac ### 
  va, vb, vc = faces_vals[:, 0, :], faces_vals[:, 1, :], faces_vals[:, 2, :] ## n_faces x 3
  
  projected_pts = projected_pts - va.unsqueeze(0)
  
  vab, vac = vb - va, vc - va
  vab_norm, vac_norm = vab / torch.clamp(torch.norm(vab, dim=-1, p=2, keepdim=True), min=1e-7), vac / torch.clamp(torch.norm(vac, dim=-1, p=2, keepdim=True), min=1e-7)
  
  coeff_vab = torch.sum(vab_norm.unsqueeze(0) * projected_pts, dim=-1) / torch.clamp(torch.norm(vab, dim=-1, p=2, keepdim=False), min=1e-7)
  coeff_vac = torch.sum(vac_norm.unsqueeze(0) * projected_pts, dim=-1) / torch.clamp(torch.norm(vac, dim=-1, p=2, keepdim=False), min=1e-7)
  
  # coeff_vab = torch.sum(vab.unsqueeze(0) * projected_pts, dim=-1) ### n_pts x n_faces
  # coeff_vac = torch.sum(vac.unsqueeze(0) * projected_pts, dim=-1) ### n_pts x n_faces
  
  pts_in_faces = (((coeff_vab >= 0.).float() + (coeff_vac >= 0.).float() + (coeff_vab + coeff_vac <= 0.5).float()) > 2.5).float() ### n_pts x n_faces ### pts_in_faces --> 
  ### pts_in_faces and delta_faces_pts_ds 
  ### pts_in_faces: the projected pts in faces...
  return delta_faces_pts_ds, pts_in_faces ### delta_faces_pts_ds: n_pts x n_faces; pts_in_faces: n_pts x n_faces ###
   
  


### 
#### revolute joitns here ####
def collision_loss(mesh_1, mesh_2, keypts_1, keypts_2, joints, n_sim_steps=100, early_stop=False, penalize_largest=False, pts_loss=False, st_def_pcs=None):
  joint_dir, joint_pvp, joint_angle = joints
  joint_dir = joint_dir.cuda()
  joint_pvp = joint_pvp.cuda()
  
  ### should save the sequence of transformed shapes ... ###
  
  verts1, faces1 = mesh_1
  verts2, faces2 = mesh_2 # mesh 1 mesh 2
  
  ### verts2, keypts_2.detach() ###
  ### verts2, keypts_2 ###
  verts2 = verts2.detach()
  keypts_2 = keypts_2.detach()
  ### verts2, keypts_2 ###
  
  ### not just a loss, but constraints ###
  ### iteratively projection ###
  
  # print(f"verts1: {verts1.size()}, verts2: {verts2.size()}, faces1: {faces1.size()}, faces2: {faces2.size()}, joint_dir: {joint_dir.size()}, joint_pvp: {joint_pvp.size()}")
  
  ### sel_verts, sel_faces_vals ###
  ### for sub_verts and sub_faces_vals ###
  sel_verts2, sel_faces_vals2 = get_sub_verts_faces_from_pts(verts2, faces2, keypts_2)
  sel_faces_vns2 =  get_faces_normals(sel_faces_vals2)
  
  sel_faces_vns2 = sel_faces_vns2.detach()
  
  
  ### pts_in_faces & delta_ds in two adjacent time stamps ###
  ### collision response for the loss term? ### 
  ### penetration depth * face_ns for all collided pts
  keypts_sequence = [keypts_1.clone()]
  keypts_sequence = []
  delta_faces_pts_ds_sequence = []
  pts_in_faces_sequence = [] 
  ### pivot point prediction, joint axis direction prediction ### 
  # ### joint axis direction prediction ###
  
  delta_joint_angle = joint_angle / float(n_sim_steps) ### delta_joint_angles ###
  
  tot_collision_loss = 0.
  
  non_collided_pts = torch.ones((keypts_1.size(0), ), dtype=torch.float32, requires_grad=False).cuda()
  
  
  mesh_pts_sequence = []
  
  def_pcs_sequence = []
  
  for i in range(0, n_sim_steps): ### joint_angle ###
    cur_joint_angle = i * delta_joint_angle ### delta_joint_angle ###
    ### revoluteTransform ### joint_pvp
    pts, m = revoluteTransform(keypts_1.detach().cpu().numpy(), joint_pvp.detach().cpu().numpy(), joint_dir.detach().cpu().numpy(), cur_joint_angle)
    m = torch.from_numpy(m).float().cuda() ### 4 x 4
    
    kpts_expanded = torch.cat([keypts_1, torch.ones((keypts_1.size(0), 1), dtype=torch.float32).cuda()], dim=-1) #### kpts_expanded
    pts = torch.matmul(kpts_expanded, m)
    # pts = torch.matmul(keypts_1, m[:3]) ### n_keypts x 3 xxx 3 x 4 --> 
    pts = pts[:, :3] ### pts: n_keypts x 3
    
    # if st_def_pcs is not None:
    #   part1_pc = st_def_pcs[0][0]
    #   part1_pc_expanded = torch.cat([])
    
    
    #### distance_pts_faces, pts_in_faces, delta_faces_pts_ds #### # distance pts faces #
    delta_faces_pts_ds, pts_in_faces = get_distance_pts_faces(pts, sel_faces_vals2, sel_faces_vns2)
    
    
    
    mesh_pts_expanded = torch.cat([verts1, torch.ones((verts1.size(0), 1), dtype=torch.float32).cuda()], dim=-1) #### kpts_expanded
    mesh_pts_expanded = torch.matmul(mesh_pts_expanded, m)
    # pts = torch.matmul(keypts_1, m[:3]) ### n_keypts x 3 xxx 3 x 4 --> 
    mesh_pts_expanded = mesh_pts_expanded[:, :3] ### pts: n_keypts x 3
    mesh_pts_sequence.append(mesh_pts_expanded.clone())
    
    ### 
    # if penalize_largest:
    #   ### delta_faces_pts_ds: n_pts x n_faces; pts_in_faces: n_pts x n_faces ### 
    #   abs_filtered_delta_faces_pts_ds = torch.abs(delta_faces_pts_ds) * pts_in_faces ### 
    #   maxx_abs_pts_faces_ds, maxx_abs_pts_faces_ds_idxes = torch.max(abs_filtered_delta_faces_pts_ds, dim=-1) ### 
    #   maxx_abs_pts_faces_ds_idxes = maxx_abs_pts_faces_ds_idxes.unsqueeze(-1).contiguous().repeat(1, pts_in_faces.size(1)) ###
    #   pts_faces_ds_idxes_range = torch.arange(pts_in_faces.size(1)).contiguous().unsqueeze(0).cuda()
    #   maxx_mask = (pts_faces_ds_idxes_range == maxx_abs_pts_faces_ds_idxes)
    #   cur_delta_faces_pts_ds = torch.zeros_like(delta_faces_pts_ds)
    #   cur_delta_faces_pts_ds[maxx_mask] = delta_faces_pts_ds[maxx_mask]
    #   delta_faces_pts_ds = cur_delta_faces_pts_ds
    
    
    # if len(delta_faces_pts_ds_sequence) > 0 and i == 0 or i == n_sim_steps - 1:
    if len(delta_faces_pts_ds_sequence) > 0:
      prev_delta_faces_pts_ds = delta_faces_pts_ds_sequence[-1]
      prev_pts_in_faces = pts_in_faces_sequence[-1] ### not important
      prev_pts = keypts_sequence[-1]
      
      sgn_delta_faces_ds = torch.sign(delta_faces_pts_ds) ### sign of faces_ds
      sgn_prev_delta_faces_ds = torch.sign(prev_delta_faces_pts_ds) ### sign of prev_faces_ds
      ### different signs ###
      collision_pts_faces = (sgn_delta_faces_ds != sgn_prev_delta_faces_ds).float() ### n_pts x n_faces 
      
      
      if penalize_largest:
        ### delta_faces_pts_ds: n_pts x n_faces; pts_in_faces: n_pts x n_faces ### 
        abs_filtered_delta_faces_pts_ds = torch.abs(delta_faces_pts_ds) * collision_pts_faces * pts_in_faces ### 
        maxx_abs_pts_faces_ds, maxx_abs_pts_faces_ds_idxes = torch.max(abs_filtered_delta_faces_pts_ds, dim=-1) ### 
        maxx_abs_pts_faces_ds_idxes = maxx_abs_pts_faces_ds_idxes.unsqueeze(-1).contiguous().repeat(1, pts_in_faces.size(1)) ###
        pts_faces_ds_idxes_range = torch.arange(pts_in_faces.size(1)).contiguous().unsqueeze(0).cuda()
        maxx_mask = (pts_faces_ds_idxes_range == maxx_abs_pts_faces_ds_idxes)
        cur_delta_faces_pts_ds = torch.zeros_like(delta_faces_pts_ds)
        cur_delta_faces_pts_ds[maxx_mask] = delta_faces_pts_ds[maxx_mask]
        # delta_faces_pts_ds = cur_delta_faces_pts_ds
      else:
        cur_delta_faces_pts_ds = delta_faces_pts_ds
      
        
      # collision_dists = collision_pts_faces * delta_faces_pts_ds ### n_pts x n_faces
      
      collision_dists = collision_pts_faces * cur_delta_faces_pts_ds ### n_pts x n_faces
      ### collision_dists ### n_pts x n_faces
       ### i think the sim step 
       ### whether tow meshes collide with each other: in the target mesh, 
      ### collision_pulse, collision_dists
      collision_pulse = (collision_dists * pts_in_faces * non_collided_pts.unsqueeze(-1)).unsqueeze(-1) * sel_faces_vns2.unsqueeze(0) ### n_pts x n_faces x 3 --> pulse
      
      collided_indicator = ((pts_in_faces * non_collided_pts.unsqueeze(-1) * collision_pts_faces).sum(-1) > 0.1).float()
      
      
      
      if pts_loss:
        ### loss version v2: for pts directly ###
        collision_loss = torch.sum(collision_pulse * pts.unsqueeze(1), dim=-1) ### n_pts x n_faces ### 
        ### loss version v2: for pts directly ###
      else:
        ### loss version v1: for pts directly ###
        delta_keypts = pts - prev_pts ### from the previous keypts to hte current keypts ### pts - prev_pts
        collision_loss = torch.sum(collision_pulse * delta_keypts.unsqueeze(1), dim=-1) ### n_pts x n_faces ### 
        ### loss version v1: for pts directly ###
        
      
      non_collided_indicator = 1.0  - collided_indicator # - (collision_pulse.sum(-1).sum(-1) > 1e-6).float()
      # print(f"collision_pulse: {collision_pulse.size()}, collided_indicator: {collided_indicator.size()}, non_collided_pts: {non_collided_pts.size()}")
      # non_collided_pts[collided_indicator] = non_collided_pts[collided_indicator] * 0.
      non_collided_pts = non_collided_pts * non_collided_indicator
      # print(f"collision_loss: {collision_loss.sum().mean().item()}, collided_indicator: {collided_indicator.sum(-1).item()}, non_collided_pts: {non_collided_pts.sum(-1).item()}")
      
      # ### loss version v2: for pts directly ###
      # collision_loss = torch.sum(collision_pulse * pts.unsqueeze(1), dim=-1) ### n_pts x n_faces ### 
      # ### loss version v2: for pts directly ###
      collision_loss = torch.sum(collision_loss, dim=-1).sum() ###  ## for all faces ###
      tot_collision_loss += collision_loss
      if early_stop and collision_loss.item() > 0.0001:
        break


    delta_faces_pts_ds_sequence.append(delta_faces_pts_ds.clone())
    pts_in_faces_sequence.append(pts_in_faces.clone())
    keypts_sequence.append(pts.clone())
    
  # tot_collision_loss /= n_sim_steps
    ### delta_faces_
    # if 
    
  # print(f"tot_collision_loss: {tot_collision_loss}")
    
  ### can even test for one part at first
  return tot_collision_loss, keypts_sequence, mesh_pts_sequence ### collision_loss for all sim steps ###
    



### 
#### revolute joitns here ####
def collision_loss_prismatic(mesh_1, mesh_2, keypts_1, keypts_2, joints, n_sim_steps=100, early_stop=False, penalize_largest=False, pts_loss=False, st_def_pcs=None):
  joint_dir, joint_pvp, joint_angle = joints
  joint_dir = joint_dir.cuda()
  joint_pvp = joint_pvp.cuda()
  
  ### should save the sequence of transformed shapes ... ###
  
  verts1, faces1 = mesh_1
  verts2, faces2 = mesh_2
  
  ### verts2, keypts_2.detach() ###
  ### verts2, keypts_2 ###
  verts2 = verts2.detach()
  keypts_2 = keypts_2.detach()
  ### verts2, keypts_2 ###
  
  ### not just a loss, but constraints ###
  ### iteratively projection ###
  
  # print(f"verts1: {verts1.size()}, verts2: {verts2.size()}, faces1: {faces1.size()}, faces2: {faces2.size()}, joint_dir: {joint_dir.size()}, joint_pvp: {joint_pvp.size()}")
  
  ### sel_verts, sel_faces_vals ###
  ### for sub_verts and sub_faces_vals ###
  sel_verts2, sel_faces_vals2 = get_sub_verts_faces_from_pts(verts2, faces2, keypts_2)
  sel_faces_vns2 =  get_faces_normals(sel_faces_vals2)
  
  sel_faces_vns2 = sel_faces_vns2.detach()
  
  
  ### pts_in_faces & delta_ds in two adjacent time stamps ###
  ### collision response for the loss term? ### 
  ### penetration depth * face_ns for all collided pts
  keypts_sequence = [keypts_1.clone()]
  keypts_sequence = []
  delta_faces_pts_ds_sequence = []
  pts_in_faces_sequence = [] 
  ### pivot point prediction, joint axis direction prediction ### 
  # ### joint axis direction prediction ###
  
  # delta_joint_angle = joint_angle / float(n_sim_steps) ### delta_joint_angles ###
  
  delta_joint_angle = 1.0 / float(n_sim_steps)
  
  tot_collision_loss = 0.
  
  non_collided_pts = torch.ones((keypts_1.size(0), ), dtype=torch.float32, requires_grad=False).cuda()
  
  
  mesh_pts_sequence = []
  
  def_pcs_sequence = []
  
  for i in range(0, n_sim_steps): ### joint_angle ###
    # cur_joint_angle = i * delta_joint_angle ### delta_joint_angle ###
    cur_delta_dis = i * delta_joint_angle
    
    moving_dis = joint_dir * cur_delta_dis ## (3,)
    moving_dis = moving_dis.unsqueeze(0)
    
    
    # ### revoluteTransform ### joint_pvp
    # pts, m = revoluteTransform(keypts_1.detach().cpu().numpy(), joint_pvp.detach().cpu().numpy(), joint_dir.detach().cpu().numpy(), cur_joint_angle)
    # m = torch.from_numpy(m).float().cuda() ### 4 x 4
    
    # kpts_expanded = torch.cat([keypts_1, torch.ones((keypts_1.size(0), 1), dtype=torch.float32).cuda()], dim=-1) #### kpts_expanded
    # pts = torch.matmul(kpts_expanded, m)
    # # pts = torch.matmul(keypts_1, m[:3]) ### n_keypts x 3 xxx 3 x 4 --> 
    # pts = pts[:, :3] ### pts: n_keypts x 3
    
    pts = moving_dis + keypts_1
    
    # if st_def_pcs is not None:
    #   part1_pc = st_def_pcs[0][0]
    #   part1_pc_expanded = torch.cat([])
    
    
    #### distance_pts_faces, pts_in_faces, delta_faces_pts_ds ####
    delta_faces_pts_ds, pts_in_faces = get_distance_pts_faces(pts, sel_faces_vals2, sel_faces_vns2)
    
    
    
    # mesh_pts_expanded = torch.cat([verts1, torch.ones((verts1.size(0), 1), dtype=torch.float32).cuda()], dim=-1) #### kpts_expanded
    # mesh_pts_expanded = torch.matmul(mesh_pts_expanded, m)
    # # pts = torch.matmul(keypts_1, m[:3]) ### n_keypts x 3 xxx 3 x 4 --> 
    # mesh_pts_expanded = mesh_pts_expanded[:, :3] ### pts: n_keypts x 3
    
    mesh_pts_expanded = verts1 + moving_dis
    
    mesh_pts_sequence.append(mesh_pts_expanded.clone())
    
    
    # if len(delta_faces_pts_ds_sequence) > 0 and i == 0 or i == n_sim_steps - 1:
    if len(delta_faces_pts_ds_sequence) > 0:
      prev_delta_faces_pts_ds = delta_faces_pts_ds_sequence[-1]
      prev_pts_in_faces = pts_in_faces_sequence[-1] ### not important
      prev_pts = keypts_sequence[-1]
      
      sgn_delta_faces_ds = torch.sign(delta_faces_pts_ds) ### sign of faces_ds
      sgn_prev_delta_faces_ds = torch.sign(prev_delta_faces_pts_ds) ### sign of prev_faces_ds
      ### different signs ###
      collision_pts_faces = (sgn_delta_faces_ds != sgn_prev_delta_faces_ds).float() ### n_pts x n_faces 
      
      
      if penalize_largest:
        ### delta_faces_pts_ds: n_pts x n_faces; pts_in_faces: n_pts x n_faces ### 
        abs_filtered_delta_faces_pts_ds = torch.abs(delta_faces_pts_ds) * collision_pts_faces * pts_in_faces ### 
        maxx_abs_pts_faces_ds, maxx_abs_pts_faces_ds_idxes = torch.max(abs_filtered_delta_faces_pts_ds, dim=-1) ### 
        maxx_abs_pts_faces_ds_idxes = maxx_abs_pts_faces_ds_idxes.unsqueeze(-1).contiguous().repeat(1, pts_in_faces.size(1)) ###
        pts_faces_ds_idxes_range = torch.arange(pts_in_faces.size(1)).contiguous().unsqueeze(0).cuda()
        maxx_mask = (pts_faces_ds_idxes_range == maxx_abs_pts_faces_ds_idxes)
        cur_delta_faces_pts_ds = torch.zeros_like(delta_faces_pts_ds)
        cur_delta_faces_pts_ds[maxx_mask] = delta_faces_pts_ds[maxx_mask]
        # delta_faces_pts_ds = cur_delta_faces_pts_ds
      else:
        cur_delta_faces_pts_ds = delta_faces_pts_ds
      
        
      # collision_dists = collision_pts_faces * delta_faces_pts_ds ### n_pts x n_faces
      
      collision_dists = collision_pts_faces * cur_delta_faces_pts_ds ### n_pts x n_faces
      ### collision_dists ### n_pts x n_faces
       ### i think the sim step 
       ### whether tow meshes collide with each other: in the target mesh, 
      ### collision_pulse, collision_dists
      collision_pulse = (collision_dists * pts_in_faces * non_collided_pts.unsqueeze(-1)).unsqueeze(-1) * sel_faces_vns2.unsqueeze(0) ### n_pts x n_faces x 3 --> pulse
      
      collided_indicator = ((pts_in_faces * non_collided_pts.unsqueeze(-1) * collision_pts_faces).sum(-1) > 0.1).float()
      
      
      
      if pts_loss:
        ### loss version v2: for pts directly ###
        collision_loss = torch.sum(collision_pulse * pts.unsqueeze(1), dim=-1) ### n_pts x n_faces ### 
        ### loss version v2: for pts directly ###
      else:
        ### loss version v1: for pts directly ###
        delta_keypts = pts - prev_pts ### from the previous keypts to hte current keypts ### pts - prev_pts
        collision_loss = torch.sum(collision_pulse * delta_keypts.unsqueeze(1), dim=-1) ### n_pts x n_faces ### 
        ### loss version v1: for pts directly ###
        
      
      non_collided_indicator = 1.0  - collided_indicator # - (collision_pulse.sum(-1).sum(-1) > 1e-6).float()
      # print(f"collision_pulse: {collision_pulse.size()}, collided_indicator: {collided_indicator.size()}, non_collided_pts: {non_collided_pts.size()}")
      # non_collided_pts[collided_indicator] = non_collided_pts[collided_indicator] * 0.
      non_collided_pts = non_collided_pts * non_collided_indicator
      # print(f"collision_loss: {collision_loss.sum().mean().item()}, collided_indicator: {collided_indicator.sum(-1).item()}, non_collided_pts: {non_collided_pts.sum(-1).item()}")
      
      # ### loss version v2: for pts directly ###
      # collision_loss = torch.sum(collision_pulse * pts.unsqueeze(1), dim=-1) ### n_pts x n_faces ### 
      # ### loss version v2: for pts directly ###
      collision_loss = torch.sum(collision_loss, dim=-1).sum() ###  ## for all faces ###
      tot_collision_loss += collision_loss
      if early_stop and collision_loss.item() > 0.0001:
        break


    delta_faces_pts_ds_sequence.append(delta_faces_pts_ds.clone())
    pts_in_faces_sequence.append(pts_in_faces.clone())
    keypts_sequence.append(pts.clone())
    
  # tot_collision_loss /= n_sim_steps
    ### delta_faces_
    # if 
    
  # print(f"tot_collision_loss: {tot_collision_loss}")
    
  ### can even test for one part at first
  return tot_collision_loss, keypts_sequence, mesh_pts_sequence ### collision_loss for all sim steps ###
    

def collision_loss_sim_sequence_ours(verts1, verts2, faces1, faces2, base_pts, use_delta=False, sel_faces_values=None): # inputs are torch tensors #
  # joint_dir, joint_pvp, joint_angle = joints
  # joint_dir = joint_dir.cuda()
  # joint_pvp = joint_pvp.cuda()
  
  ### should save the sequence of transformed shapes ... ###
  
  # verts1, faces1 = mesh_1
  # verts2, faces2 = mesh_2
  
  ### verts2, keypts_2.detach() ###
  ### verts2, keypts_2 ###
  verts2 = verts2.detach()
  faces2_exp = faces2.unsqueeze(0).repeat(verts2.size(0), 1, 1).contiguous()
  faces_values2 = model_util.batched_index_select_ours(verts2, indices=faces2_exp, dim=1) # nf x nn_face x 3 x 3 # 
  faces_values2 = faces_values2.mean(dim=-2) # nf x nn_faces x 3 
  
  if sel_faces_values is None:
    dist_hand_to_obj_verts = torch.sum(
      (verts1.detach().cpu().unsqueeze(-2) - faces_values2.detach().cpu().unsqueeze(1)) ** 2, dim=-1 # ### nf x nn_hand_verts x nn_obj_verts 
    )
    minn_dist_obj_to_hand, _ = torch.min(dist_hand_to_obj_verts, dim=0)
    minn_dist_obj_to_hand, _ = torch.min(minn_dist_obj_to_hand, dim=0) # nn_obj_vert 
    minn_dist_obj_to_hand_argsort = torch.argsort(minn_dist_obj_to_hand, dim=0, descending=False)
    cur_p_sel_faces = minn_dist_obj_to_hand_argsort[:base_pts.size(1)]
    cur_p_sel_faces = model_util.batched_index_select_ours(faces2.detach().cpu(), indices=cur_p_sel_faces, dim=0)

    
    sel_verts = []
    sel_faces = []
    sel_faces_values = []
    minn_dist_pts_verts_idx = None
    # cur_p_sel_faces = None
    for i_fr in range(verts2.size(0)):
      cur_p_sel_verts, cur_p_sel_faces, cur_p_sel_faces_vals, minn_dist_pts_verts_idx = get_sub_verts_faces_from_pts(verts2[i_fr].detach().cpu(), faces2.detach().cpu(), base_pts[i_fr].detach().cpu(), rt_sel_faces=True, minn_dist_pts_verts_idx=minn_dist_pts_verts_idx, sel_faces=cur_p_sel_faces)
      sel_verts.append(cur_p_sel_verts)
      sel_faces.append(cur_p_sel_faces)
      sel_faces_values.append(cur_p_sel_faces_vals)
  
  # keypts_2 = keypts_2.detach()
  # faces: nf x 3 # verts: nn_verts x 3 #
  # verts1: nn_verts x 3; faces1_values: nn_faces x 3 x 3 -> faces vertices 
  # faces1_values = model_util.batched_index_select_ours(values=verts1, indices=faces1, dim=0) 
  # faces2_values = model_util.batched_index_select_ours(values=verts2, indices=faces2, dim=0) 
  # faces1_normals = get_faces_normals(faces1_values)
  # faces2_normals = get_faces_normals(faces2_values)
  # delta_verts1_pts_abs, verts1_in_feats = get_distance_pts_faces(verts1, faces2_values, faces2_normals)
  # verts1 = verts
  
  
  # get_distance_pts_faces(pts, faces_vals, faces_vns):

  # sel_faces_vns2 = sel_faces_vns2.detach()
  
  
  # ### pts_in_faces & delta_ds in two adjacent time stamps ###
  # ### collision response for the loss term? ### 
  # ### penetration depth * face_ns for all collided pts
  # # keypts_sequence = [keypts_1.clone()]
  keypts_sequence = []
  delta_faces_pts_ds_sequence = []
  pts_in_faces_sequence = [] 
  # ### pivot point prediction, joint axis direction prediction ### 
  # # ### joint axis direction prediction ### #### get part joints...
  
  # # joint_dir = joints["axis"]["dir"]
  # # joint_pvp = joints["axis"]["center"]
  # # joint_a = joints["axis"]["a"]
  # # joint_b = joints["axis"]["b"]
  
  
  # delta_joint_angle = (float(joint_b) - float(joint_a)) / float(n_sim_steps - 1) ### delta_joint_angles ###
  
  tot_collision_loss = 0.
  
  # non_collided_pts = torch.ones((keypts_1.size(0), ), dtype=torch.float32, requires_grad=False) # .cuda()
  
  
  # mesh_pts_sequence = []
  
  # def_pcs_sequence = []
  
  sv_dict = {
    'hand_verts': verts1.detach().cpu().numpy(),
    'obj_verts': verts2.detach().cpu().numpy(),
    'obj_faces': faces2.detach().cpu().numpy(),
    'base_pts': base_pts.detach().cpu().numpy(),
  }
  sv_dict_fn = "tmp_dict.npy"
  np.save(sv_dict_fn, sv_dict)
  
  
  
  n_frames = verts1.shape[0]
  print(f"cur_nframes: {n_frames}")
  for i in range(0, n_frames): ### joint_angle ###
    # if not back_sim:
    #   cur_joint_angle = joint_a +  i * delta_joint_angle ### delta_joint_angle ###
    # else:
    #   cur_joint_angle = joint_b - i * delta_joint_angle  
      
    if use_delta:
      delta_joint_angle = (joint_b - joint_a) / 100.0
      
      ''' Prev. arti. state '''  
      cur_st_joint_angle = np.random.uniform(low=joint_a + delta_joint_angle, high=joint_b, size=(1,)).item() #### lower and upper limits of simulation angles
      
      ### revoluteTransform ### joint_pvp
      prev_pts, prev_m = revoluteTransform(keypts_1.detach().cpu().numpy(), joint_pvp.detach().cpu().numpy(), joint_dir.detach().cpu().numpy(), cur_st_joint_angle) ### st_joint_angle
      prev_m = torch.from_numpy(prev_m).float().cuda() ### 4 x 4
      
      kpts_expanded = torch.cat([keypts_1, torch.ones((keypts_1.size(0), 1), dtype=torch.float32).cuda()], dim=-1) #### kpts_expanded
      prev_pts = torch.matmul(kpts_expanded, prev_m)
      # pts = torch.matmul(keypts_1, m[:3]) ### n_keypts x 3 xxx 3 x 4 --> 
      prev_pts = prev_pts[:, :3] ### pts: n_keypts x 3
      
      # prev_pts = verts1[i]
      
      #### distance_pts_faces, pts_in_faces, delta_faces_pts_ds ####
      prev_delta_faces_pts_ds, prev_pts_in_faces = get_distance_pts_faces(prev_pts, sel_faces_vals2, sel_faces_vns2)
      ''' Prev. arti. state ''' 
      
      ''' Current state ''' 
      cur_ed_joint_angle = cur_st_joint_angle - delta_joint_angle
      ### revoluteTransform ### joint_pvp
      pts, m = revoluteTransform(keypts_1.detach().cpu().numpy(), joint_pvp.detach().cpu().numpy(), joint_dir.detach().cpu().numpy(), cur_st_joint_angle) ### st_joint_angle
      m = torch.from_numpy(m).float().cuda() ### 4 x 4
      
      kpts_expanded = torch.cat([keypts_1, torch.ones((keypts_1.size(0), 1), dtype=torch.float32).cuda()], dim=-1) #### kpts_expanded
      pts = torch.matmul(kpts_expanded, m)
      # pts = torch.matmul(keypts_1, m[:3]) ### n_keypts x 3 xxx 3 x 4 --> 
      pts = pts[:, :3] ### pts: n_keypts x 3
      
      #### distance_pts_faces, pts_in_faces, delta_faces_pts_ds ####
      delta_faces_pts_ds, pts_in_faces = get_distance_pts_faces(pts, sel_faces_vals2, sel_faces_vns2)
      ''' Current state ''' 
      
      sgn_delta_faces_ds = torch.sign(delta_faces_pts_ds) ### sign of faces_ds
      sgn_prev_delta_faces_ds = torch.sign(prev_delta_faces_pts_ds) ### sign of prev_faces_ds
      ### different signs ###
      collision_pts_faces = (sgn_delta_faces_ds != sgn_prev_delta_faces_ds).float() ### n_pts x n_faces 
      
      cur_delta_faces_pts_ds = delta_faces_pts_ds
      
      collision_dists = collision_pts_faces * cur_delta_faces_pts_ds ### n_pts x n_faces
      ### collision_dists ### n_pts x n_faces
       ### i think the sim step 
       ### whether tow meshes collide with each other: in the target mesh, 
      ### collision_pulse, collision_dists
      # collision_pulse = (collision_dists * pts_in_faces * non_collided_pts.unsqueeze(-1)).unsqueeze(-1) * sel_faces_vns2.unsqueeze(0) ### n_pts x n_faces x 3 --> pulse
      collision_pulse = (collision_dists * pts_in_faces).unsqueeze(-1) * sel_faces_vns2.unsqueeze(0) ### n_pts x n_faces x 3 --> pulse
      
      # collided_indicator = ((pts_in_faces * non_collided_pts.unsqueeze(-1) * collision_pts_faces).sum(-1) > 0.1).float()
      
      ### loss version v2: for pts directly ###
      collision_loss = torch.sum(collision_pulse * pts.unsqueeze(1), dim=-1) ### n_pts x n_faces ### 
      ### loss version v2: for pts directly ###
      
      # non_collided_indicator = 1.0  - collided_indicator # - (collision_pulse.sum(-1).sum(-1) > 1e-6).float()
      # # print(f"collision_pulse: {collision_pulse.size()}, collided_indicator: {collided_indicator.size()}, non_collided_pts: {non_collided_pts.size()}")
      # # non_collided_pts[collided_indicator] = non_collided_pts[collided_indicator] * 0.
      # non_collided_pts = non_collided_pts * non_collided_indicator
      # # print(f"collision_loss: {collision_loss.sum().mean().item()}, collided_indicator: {collided_indicator.sum(-1).item()}, non_collided_pts: {non_collided_pts.sum(-1).item()}")
      
      # ### loss version v2: for pts directly ###
      # collision_loss = torch.sum(collision_pulse * pts.unsqueeze(1), dim=-1) ### n_pts x n_faces ### 
      # ### loss version v2: for pts directly ###
      collision_loss = torch.sum(collision_loss, dim=-1).sum() ###  ## for all faces ###
      tot_collision_loss += collision_loss
    else:
      ### revoluteTransform ### joint_pvp
      # pts, m = revoluteTransform(keypts_1.detach().cpu().numpy(), joint_pvp.detach().cpu().numpy(), joint_dir.detach().cpu().numpy(), cur_joint_angle)
      # m = torch.from_numpy(m).float().cuda() ### 4 x 4
      
      # kpts_expanded = torch.cat([keypts_1, torch.ones((keypts_1.size(0), 1), dtype=torch.float32).cuda()
      #                            ], dim=-1) #### kpts_expanded
      # pts = torch.matmul(kpts_expanded, m)
      # pts = torch.matmul(keypts_1, m[:3]) ### n_keypts x 3 xxx 3 x 4 --> 
      # pts = pts[:, :3] ### pts: n_keypts x 3
      
      pts = verts1[i]
      
      cur_verts2 = verts2[i]
      # cur_face_values2 = model_util.batched_index_select_ours(values=cur_verts2, indices=faces2, dim=0) # nn_verts x 3 x 3 for the verts and the faces #
      # cur_face_normals = get_faces_normals(cur_face_values2)
      
      
      # #### distance_pts_faces, pts_in_faces, delta_faces_pts_ds ####
      # delta_faces_pts_ds, pts_in_faces = get_distance_pts_faces(pts.detach().cpu(), cur_face_values2.detach().cpu(), cur_face_normals.detach().cpu())
      
      
      cur_face_values2 = sel_faces_values[i]
      cur_face_normals = get_faces_normals(sel_faces_values[i])
      delta_faces_pts_ds, pts_in_faces = get_distance_pts_faces(pts.detach().cpu(), sel_faces_values[i].detach().cpu(), cur_face_normals.detach().cpu())
      
      
      # mesh_pts_expanded = torch.cat([verts1, torch.ones((verts1.size(0), 1), dtype=torch.float32).cuda()], dim=-1) #### kpts_expanded
      # mesh_pts_expanded = torch.matmul(mesh_pts_expanded, m)
      # # pts = torch.matmul(keypts_1, m[:3]) ### n_keypts x 3 xxx 3 x 4 --> 
      # mesh_pts_expanded = mesh_pts_expanded[:, :3] ### pts: n_keypts x 3
      # mesh_pts_sequence.append(mesh_pts_expanded.clone())
    
    
      # if len(delta_faces_pts_ds_sequence) > 0 and i == 0 or i == n_sim_steps - 1:
      if len(delta_faces_pts_ds_sequence) > 0:
        prev_delta_faces_pts_ds = delta_faces_pts_ds_sequence[-1]
        # prev_pts_in_faces = pts_in_faces_sequence[-1] ### not important
        prev_pts = keypts_sequence[-1]
        
        sgn_delta_faces_ds = torch.sign(delta_faces_pts_ds) ### sign of faces_ds
        sgn_prev_delta_faces_ds = torch.sign(prev_delta_faces_pts_ds) ### sign of prev_faces_ds
        ### different signs ###
        collision_pts_faces = (sgn_delta_faces_ds != sgn_prev_delta_faces_ds).float() ### n_pts x n_faces 

        cur_delta_faces_pts_ds = delta_faces_pts_ds

        collision_dists = collision_pts_faces * cur_delta_faces_pts_ds ### n_pts x n_faces
        ### collision_dists ### n_pts x n_faces
        ### i think the sim step 
        ### whether tow meshes collide with each other: in the target mesh, 
        ### collision_pulse, collision_dists
        ### collision pulse ####
        # collision_pulse = 1.0 * (collision_dists * pts_in_faces * non_collided_pts.unsqueeze(-1)).unsqueeze(-1) * cur_face_normals.unsqueeze(0).detach().cpu() ### n_pts x n_faces x 3 --> pulse
        
        # collided_indicator = ((pts_in_faces * non_collided_pts.unsqueeze(-1) * collision_pts_faces).sum(-1) > 0.1).float()
        ### collision pulse ####
        
        
        ### ==== collision loss v1 ==== ###
        # # # pulse ! -> tegether wit hface normals # 
        # collision_pulse = 1.0 * (collision_dists * pts_in_faces).unsqueeze(-1) * cur_face_normals.unsqueeze(0).detach().cpu() ### n_pts x n_faces x 3 --> pulse
        
        # collided_indicator = ((pts_in_faces * collision_pts_faces).sum(-1) > 0.1).float()

        # ### loss version v2: for pts directly ### ### calculate collision_loss from collision_pulse and pts ###
        # collision_loss = torch.sum(collision_pulse.cuda() * pts.unsqueeze(1), dim=-1) ### n_pts x n_faces ### 
        # collision_loss = collision_loss.mean()
        ### loss version v2: for pts directly ###
        ### ==== collision loss v1 ==== ###
        
        ### ==== collision loss v2 ==== ###
        pts_in_faces = pts_in_faces.cuda()
        # collision_pulse = 1.0 * (collision_dists * pts_in_faces).unsqueeze(-1) * cur_face_normals.unsqueeze(0).detach()
        cur_face_avg_values = torch.mean(cur_face_values2.detach(), dim=-2) # nn_faces x 3 -> for the face_avg_values #
        face_avg_values_to_key_pts = pts.unsqueeze(1) - cur_face_avg_values.unsqueeze(0).cuda() # nn_ptss x nn_faces x 3 -> from face avg values to joints here #
        face_avg_values_to_key_pts = face_avg_values_to_key_pts * pts_in_faces.unsqueeze(-1) # * collision_pts_faces.unsqueeze(-1).cuda()
        collision_loss = torch.mean((face_avg_values_to_key_pts ** 2).sum(dim=-1)) # nn_pts x nn_faces -> a single value here #
        ### ==== collision loss v2 ==== ###
        
        
        
        # non_collided_indicator = 1.0  - collided_indicator # - (collision_pulse.sum(-1).sum(-1) > 1e-6).float()
        # # print(f"collision_pulse: {collision_pulse.size()}, collided_indicator: {collided_indicator.size()}, non_collided_pts: {non_collided_pts.size()}")
        # # non_collided_pts[collided_indicator] = non_collided_pts[collided_indicator] * 0.
        # non_collided_pts = non_collided_pts * non_collided_indicator
        # # print(f"collision_loss: {collision_loss.sum().mean().item()}, collided_indicator: {collided_indicator.sum(-1).item()}, non_collided_pts: {non_collided_pts.sum(-1).item()}")
        
        # ### loss version v2: for pts directly ###
        # collision_loss = torch.sum(collision_pulse * pts.unsqueeze(1), dim=-1) ### n_pts x n_faces ### 
        # ### loss version v2: for pts directly ###
        # collision_loss = torch.sum(collision_loss, dim=-1).sum() ###  ## for all faces ###
        tot_collision_loss += collision_loss
        # if early_stop and collision_loss.item() > 0.0001:
        #   break

    delta_faces_pts_ds_sequence.append(delta_faces_pts_ds.clone())
    pts_in_faces_sequence.append(pts_in_faces.clone())
    keypts_sequence.append(pts.clone())
  
  tot_collision_loss = tot_collision_loss / n_frames
  # tot_collision_loss /= n_sim_steps
    ### delta_faces_
    # if 
    
  # print(f"tot_collision_loss: {tot_collision_loss}")
    
  ### can even test for one part at first
  return tot_collision_loss, sel_faces_values # , keypts_sequence, mesh_pts_sequence ### collision_loss for all sim steps ###

  
# collision loss and sim sequence   
# 
def collision_loss_sim_sequence_ours_ccd_rigid(verts1, verts2, faces1, faces2, base_pts, obj_rot, obj_trans,
                                         use_delta=False, sel_faces_values=None, canon_verts1=None, canon_sel_faces_values=None): # inputs are torch tensors #
  # joint_dir, joint_pvp, joint_angle = joints
  # joint_dir = joint_dir.cuda()
  # joint_pvp = joint_pvp.cuda()
  
  ### should save the sequence of transformed shapes ... ###
  
  # verts1, faces1 = mesh_1
  # verts2, faces2 = mesh_2
  
  ### verts2, keypts_2.detach() ###
  ### verts2, keypts_2 ###
  verts2 = verts2.detach()
  faces2_exp = faces2.unsqueeze(0).repeat(verts2.size(0), 1, 1).contiguous()
  faces_values2 = model_util.batched_index_select_ours(verts2, indices=faces2_exp, dim=1) # nf x nn_face x 3 x 3 # 
  faces_values2 = faces_values2.mean(dim=-2) # nf x nn_faces x 3 
  
  if sel_faces_values is None:
    dist_hand_to_obj_verts = torch.sum(
      (verts1.detach().cpu().unsqueeze(-2) - faces_values2.detach().cpu().unsqueeze(1)) ** 2, dim=-1 # ### nf x nn_hand_verts x nn_obj_verts 
    )
    minn_dist_obj_to_hand, _ = torch.min(dist_hand_to_obj_verts, dim=0)
    minn_dist_obj_to_hand, _ = torch.min(minn_dist_obj_to_hand, dim=0) # nn_obj_vert 
    minn_dist_obj_to_hand_argsort = torch.argsort(minn_dist_obj_to_hand, dim=0, descending=False)
    cur_p_sel_faces = minn_dist_obj_to_hand_argsort[:base_pts.size(1)]
    cur_p_sel_faces = model_util.batched_index_select_ours(faces2.detach().cpu(), indices=cur_p_sel_faces, dim=0)

    
    sel_verts = []
    sel_faces = []
    sel_faces_values = []
    canon_sel_faces_values = []
    canon_verts1 = []
    minn_dist_pts_verts_idx = None
    # cur_p_sel_faces = None
    for i_fr in range(verts2.size(0)):
      
      
      
      cur_p_sel_verts, cur_p_sel_faces, cur_p_sel_faces_vals, minn_dist_pts_verts_idx = get_sub_verts_faces_from_pts(verts2[i_fr].detach().cpu(), faces2.detach().cpu(), base_pts[i_fr].detach().cpu(), rt_sel_faces=True, minn_dist_pts_verts_idx=minn_dist_pts_verts_idx, sel_faces=cur_p_sel_faces)
      sel_verts.append(cur_p_sel_verts)
      sel_faces.append(cur_p_sel_faces)
      sel_faces_values.append(cur_p_sel_faces_vals)
      
      # cur_p_sel_faces_vals: nn_sel_faces x 3 x 3 
      cur_fr_obj_rot = obj_rot[i_fr].detach().cpu() # 3 x 3
      cur_fr_obj_trans = obj_trans[i_fr].detach().cpu() # 3
      cur_fr_verts1 = verts1[i_fr]
      # cur_fr_canon_faces_values: nn_sel_faces x 3 x 3; cur_
      cur_fr_canon_faces_values = torch.matmul(cur_p_sel_faces_vals -  cur_fr_obj_trans.unsqueeze(0).unsqueeze(0), cur_fr_obj_rot.transpose(1, 0).unsqueeze(0)) # 
      # nn_verts x 3 xxxx 3 x 3 -> nn_verts x 3 #
      cur_fr_canon_verts1 = torch.matmul(
        cur_fr_verts1 - cur_fr_obj_trans.unsqueeze(0).cuda(), cur_fr_obj_rot.transpose(1, 0).cuda()
      )
      canon_verts1.append(cur_fr_canon_verts1) # 
      canon_sel_faces_values.append(cur_fr_canon_faces_values)  # face values canonicalized #
    
    
    
       
  
  # ### pts_in_faces & delta_ds in two adjacent time stamps ###
  # ### collision response for the loss term? ### 
  # ### penetration depth * face_ns for all collided pts
  # # keypts_sequence = [keypts_1.clone()]
  keypts_sequence = []
  delta_faces_pts_ds_sequence = []
  pts_in_faces_sequence = [] 
  # ### pivot point prediction, joint axis direction prediction ### 
  # # ### joint axis direction prediction ### #### get part joints...
  
  # # joint_dir = joints["axis"]["dir"]
  # # joint_pvp = joints["axis"]["center"]
  # # joint_a = joints["axis"]["a"]
  # # joint_b = joints["axis"]["b"]
  
  
  # delta_joint_angle = (float(joint_b) - float(joint_a)) / float(n_sim_steps - 1) ### delta_joint_angles ###
  
  # tot_collision_loss = 0.
  
  # non_collided_pts = torch.ones((keypts_1.size(0), ), dtype=torch.float32, requires_grad=False) # .cuda()
  
  
  # mesh_pts_sequence = []
  
  # def_pcs_sequence = []
  
  # sv_dict = {
  #   'hand_verts': verts1.detach().cpu().numpy(),
  #   'obj_verts': verts2.detach().cpu().numpy(),
  #   'obj_faces': faces2.detach().cpu().numpy(),
  #   'base_pts': base_pts.detach().cpu().numpy(),
  # }
  # sv_dict_fn = "tmp_dict.npy"
  # np.save(sv_dict_fn, sv_dict)
  
  
  # verts2: 
  
  n_frames = verts1.shape[0]
  print(f"cur_nframes: {n_frames}")
  for i in range(0, n_frames): ### joint_angle ###
    

    pts = canon_verts1[i]

    
    # cur_verts2 = verts2[i]
    # cur_face_values2 = model_util.batched_index_select_ours(values=cur_verts2, indices=faces2, dim=0) # nn_verts x 3 x 3 for the verts and the faces #
    # cur_face_normals = get_faces_normals(cur_face_values2)
    
    
    # #### distance_pts_faces, pts_in_faces, delta_faces_pts_ds ####
    # delta_faces_pts_ds, pts_in_faces = get_distance_pts_faces(pts.detach().cpu(), cur_face_values2.detach().cpu(), cur_face_normals.detach().cpu())
    
    
    # cur_face_values2 = canon_sel_faces_values[i]
    cur_face_normals = get_faces_normals(canon_sel_faces_values[i])
    delta_faces_pts_ds, pts_in_faces = get_distance_pts_faces(pts.detach().cpu(), canon_sel_faces_values[i].detach().cpu(), cur_face_normals.detach().cpu())
    
    
    # mesh_pts_expanded = torch.cat([verts1, torch.ones((verts1.size(0), 1), dtype=torch.float32).cuda()], dim=-1) #### kpts_expanded
    # mesh_pts_expanded = torch.matmul(mesh_pts_expanded, m)
    # # pts = torch.matmul(keypts_1, m[:3]) ### n_keypts x 3 xxx 3 x 4 --> 
    # mesh_pts_expanded = mesh_pts_expanded[:, :3] ### pts: n_keypts x 3
    # mesh_pts_sequence.append(mesh_pts_expanded.clone())
  
  
    # if len(delta_faces_pts_ds_sequence) > 0 and i == 0 or i == n_sim_steps - 1:
    if len(delta_faces_pts_ds_sequence) > 0:
      
      prev_pts = keypts_sequence[-1] # nn_tps x 3 #
      prev_delta_faces_pts_ds = delta_faces_pts_ds_sequence[-1]
      
      coef = 1.
      coef_step = 0.1
      while coef >= 0.:
        print(f"coef: {coef}")
        cur_step_pts = prev_pts + (pts - prev_pts) * coef
        cur_step_delta_faces_pts_ds, cur_step_pts_in_faces = get_distance_pts_faces(cur_step_pts.detach().cpu(), canon_sel_faces_values[i].detach().cpu(), cur_face_normals.detach().cpu())
        
        sgn_delta_faces_ds = torch.sign(cur_step_delta_faces_pts_ds) ### sign of faces_ds
        sgn_prev_delta_faces_ds = torch.sign(prev_delta_faces_pts_ds) ### sign of prev_faces_ds
        ### different signs ###
        collision_pts_faces = (sgn_delta_faces_ds != sgn_prev_delta_faces_ds).float() ### n_pts x n_faces 
        collision_pts_faces = ((collision_pts_faces + cur_step_pts_in_faces.float()) > 1.5).float()
        collision_pts_faces_sum = collision_pts_faces.sum().item() #  pts in faces? #
        if collision_pts_faces_sum == 0:
          break
        coef = coef - coef_step 
      coef = max(0., coef)
      pts = prev_pts + (pts - prev_pts) * coef
      delta_faces_pts_ds = cur_step_delta_faces_pts_ds
      pts_in_faces = cur_step_pts_in_faces
      
      
      # non_collided_indicator = 1.0  - collided_indicator # - (collision_pulse.sum(-1).sum(-1) > 1e-6).float()
      # # print(f"collision_pulse: {collision_pulse.size()}, collided_indicator: {collided_indicator.size()}, non_collided_pts: {non_collided_pts.size()}")
      # # non_collided_pts[collided_indicator] = non_collided_pts[collided_indicator] * 0.
      # non_collided_pts = non_collided_pts * non_collided_indicator
      # # print(f"collision_loss: {collision_loss.sum().mean().item()}, collided_indicator: {collided_indicator.sum(-1).item()}, non_collided_pts: {non_collided_pts.sum(-1).item()}")
      
      # ### loss version v2: for pts directly ###
      # collision_loss = torch.sum(collision_pulse * pts.unsqueeze(1), dim=-1) ### n_pts x n_faces ### 
      # ### loss version v2: for pts directly ###
      # collision_loss = torch.sum(collision_loss, dim=-1).sum() ###  ## for all faces ###
      # tot_collision_loss += collision_loss
      # if early_stop and collision_loss.item() > 0.0001:
      #   break

    delta_faces_pts_ds_sequence.append(delta_faces_pts_ds.clone())
    pts_in_faces_sequence.append(pts_in_faces.clone())
    keypts_sequence.append(pts.clone())
  
  # tot_collision_loss = tot_collision_loss / n_frames
  # tot_collision_loss /= n_sim_steps
    ### delta_faces_
    # if 
  
  keypts_sequence = torch.stack(keypts_sequence, dim=0) ### nn_frames x nn_keypts x 3 ###
  # print(f"tot_collision_loss: {tot_collision_loss}")
  # sel_faces_values=None, canon_verts1=None, canon_sel_faces_values=None
  ### can even test for one part at first
  return keypts_sequence, sel_faces_values, canon_verts1, canon_sel_faces_values # , keypts_sequence, mesh_pts_sequence ### collision_loss for all sim steps ###

  

def collision_loss_sim_sequence(verts1, 
                                keypts_1, verts2, sel_faces_vals2, sel_faces_vns2, joints, n_sim_steps=100, back_sim=False, use_delta=False):
  # joint_dir, joint_pvp, joint_angle = joints
  # joint_dir = joint_dir.cuda()
  # joint_pvp = joint_pvp.cuda()
  
  ### should save the sequence of transformed shapes ... ###
  
  # verts1, faces1 = mesh_1
  # verts2, faces2 = mesh_2
  
  ### verts2, keypts_2.detach() ###
  ### verts2, keypts_2 ###
  verts2 = verts2.detach()
  # keypts_2 = keypts_2.detach()

  sel_faces_vns2 = sel_faces_vns2.detach()
  
  
  ### pts_in_faces & delta_ds in two adjacent time stamps ###
  ### collision response for the loss term? ### 
  ### penetration depth * face_ns for all collided pts
  # keypts_sequence = [keypts_1.clone()]
  keypts_sequence = []
  delta_faces_pts_ds_sequence = []
  pts_in_faces_sequence = [] 
  ### pivot point prediction, joint axis direction prediction ### 
  # ### joint axis direction prediction ### #### get part joints...
  
  joint_dir = joints["axis"]["dir"]
  joint_pvp = joints["axis"]["center"]
  joint_a = joints["axis"]["a"]
  joint_b = joints["axis"]["b"]
  
  
  delta_joint_angle = (float(joint_b) - float(joint_a)) / float(n_sim_steps - 1) ### delta_joint_angles ###
  
  tot_collision_loss = 0.
  
  non_collided_pts = torch.ones((keypts_1.size(0), ), dtype=torch.float32, requires_grad=False) # .cuda()
  
  
  mesh_pts_sequence = []
  
  def_pcs_sequence = []
  
  
  
  
  for i in range(0, n_sim_steps): ### joint_angle ###
    if not back_sim:
      cur_joint_angle = joint_a +  i * delta_joint_angle ### delta_joint_angle ###
    else:
      cur_joint_angle = joint_b - i * delta_joint_angle  
      
    if use_delta:
      delta_joint_angle = (joint_b - joint_a) / 100.0
      
      ''' Prev. arti. state '''  
      cur_st_joint_angle = np.random.uniform(low=joint_a + delta_joint_angle, high=joint_b, size=(1,)).item() #### lower and upper limits of simulation angles
      
      ### revoluteTransform ### joint_pvp
      prev_pts, prev_m = revoluteTransform(keypts_1.detach().cpu().numpy(), joint_pvp.detach().cpu().numpy(), joint_dir.detach().cpu().numpy(), cur_st_joint_angle) ### st_joint_angle
      prev_m = torch.from_numpy(prev_m).float().cuda() ### 4 x 4
      
      kpts_expanded = torch.cat([keypts_1, torch.ones((keypts_1.size(0), 1), dtype=torch.float32).cuda()], dim=-1) #### kpts_expanded
      prev_pts = torch.matmul(kpts_expanded, prev_m)
      # pts = torch.matmul(keypts_1, m[:3]) ### n_keypts x 3 xxx 3 x 4 --> 
      prev_pts = prev_pts[:, :3] ### pts: n_keypts x 3
      
      #### distance_pts_faces, pts_in_faces, delta_faces_pts_ds ####
      prev_delta_faces_pts_ds, prev_pts_in_faces = get_distance_pts_faces(prev_pts, sel_faces_vals2, sel_faces_vns2)
      ''' Prev. arti. state ''' 
      
      ''' Current state ''' 
      cur_ed_joint_angle = cur_st_joint_angle - delta_joint_angle
      ### revoluteTransform ### joint_pvp
      pts, m = revoluteTransform(keypts_1.detach().cpu().numpy(), joint_pvp.detach().cpu().numpy(), joint_dir.detach().cpu().numpy(), cur_st_joint_angle) ### st_joint_angle
      m = torch.from_numpy(m).float().cuda() ### 4 x 4
      
      kpts_expanded = torch.cat([keypts_1, torch.ones((keypts_1.size(0), 1), dtype=torch.float32).cuda()], dim=-1) #### kpts_expanded
      pts = torch.matmul(kpts_expanded, m)
      # pts = torch.matmul(keypts_1, m[:3]) ### n_keypts x 3 xxx 3 x 4 --> 
      pts = pts[:, :3] ### pts: n_keypts x 3
      
      #### distance_pts_faces, pts_in_faces, delta_faces_pts_ds ####
      delta_faces_pts_ds, pts_in_faces = get_distance_pts_faces(pts, sel_faces_vals2, sel_faces_vns2)
      ''' Current state ''' 
      
      sgn_delta_faces_ds = torch.sign(delta_faces_pts_ds) ### sign of faces_ds
      sgn_prev_delta_faces_ds = torch.sign(prev_delta_faces_pts_ds) ### sign of prev_faces_ds
      ### different signs ###
      collision_pts_faces = (sgn_delta_faces_ds != sgn_prev_delta_faces_ds).float() ### n_pts x n_faces 
      
      cur_delta_faces_pts_ds = delta_faces_pts_ds
      
      collision_dists = collision_pts_faces * cur_delta_faces_pts_ds ### n_pts x n_faces
      ### collision_dists ### n_pts x n_faces
       ### i think the sim step 
       ### whether tow meshes collide with each other: in the target mesh, 
      ### collision_pulse, collision_dists
      # collision_pulse = (collision_dists * pts_in_faces * non_collided_pts.unsqueeze(-1)).unsqueeze(-1) * sel_faces_vns2.unsqueeze(0) ### n_pts x n_faces x 3 --> pulse
      collision_pulse = (collision_dists * pts_in_faces).unsqueeze(-1) * sel_faces_vns2.unsqueeze(0) ### n_pts x n_faces x 3 --> pulse
      
      # collided_indicator = ((pts_in_faces * non_collided_pts.unsqueeze(-1) * collision_pts_faces).sum(-1) > 0.1).float()
      
      ### loss version v2: for pts directly ###
      collision_loss = torch.sum(collision_pulse * pts.unsqueeze(1), dim=-1) ### n_pts x n_faces ### 
      ### loss version v2: for pts directly ###
      
      # non_collided_indicator = 1.0  - collided_indicator # - (collision_pulse.sum(-1).sum(-1) > 1e-6).float()
      # # print(f"collision_pulse: {collision_pulse.size()}, collided_indicator: {collided_indicator.size()}, non_collided_pts: {non_collided_pts.size()}")
      # # non_collided_pts[collided_indicator] = non_collided_pts[collided_indicator] * 0.
      # non_collided_pts = non_collided_pts * non_collided_indicator
      # # print(f"collision_loss: {collision_loss.sum().mean().item()}, collided_indicator: {collided_indicator.sum(-1).item()}, non_collided_pts: {non_collided_pts.sum(-1).item()}")
      
      # ### loss version v2: for pts directly ###
      # collision_loss = torch.sum(collision_pulse * pts.unsqueeze(1), dim=-1) ### n_pts x n_faces ### 
      # ### loss version v2: for pts directly ###
      collision_loss = torch.sum(collision_loss, dim=-1).sum() ###  ## for all faces ###
      tot_collision_loss += collision_loss
    else:
      ### revoluteTransform ### joint_pvp
      pts, m = revoluteTransform(keypts_1.detach().cpu().numpy(), joint_pvp.detach().cpu().numpy(), joint_dir.detach().cpu().numpy(), cur_joint_angle)
      m = torch.from_numpy(m).float().cuda() ### 4 x 4
      
      kpts_expanded = torch.cat([keypts_1, torch.ones((keypts_1.size(0), 1), dtype=torch.float32).cuda()
                                 ], dim=-1) #### kpts_expanded
      pts = torch.matmul(kpts_expanded, m)
      # pts = torch.matmul(keypts_1, m[:3]) ### n_keypts x 3 xxx 3 x 4 --> 
      pts = pts[:, :3] ### pts: n_keypts x 3
      
      #### distance_pts_faces, pts_in_faces, delta_faces_pts_ds ####
      delta_faces_pts_ds, pts_in_faces = get_distance_pts_faces(pts.detach().cpu(), sel_faces_vals2.detach().cpu(), sel_faces_vns2.detach().cpu())
      
      
      mesh_pts_expanded = torch.cat([verts1, torch.ones((verts1.size(0), 1), dtype=torch.float32).cuda()], dim=-1) #### kpts_expanded
      mesh_pts_expanded = torch.matmul(mesh_pts_expanded, m)
      # pts = torch.matmul(keypts_1, m[:3]) ### n_keypts x 3 xxx 3 x 4 --> 
      mesh_pts_expanded = mesh_pts_expanded[:, :3] ### pts: n_keypts x 3
      mesh_pts_sequence.append(mesh_pts_expanded.clone())
    
    
      # if len(delta_faces_pts_ds_sequence) > 0 and i == 0 or i == n_sim_steps - 1:
      if len(delta_faces_pts_ds_sequence) > 0:
        prev_delta_faces_pts_ds = delta_faces_pts_ds_sequence[-1]
        # prev_pts_in_faces = pts_in_faces_sequence[-1] ### not important
        prev_pts = keypts_sequence[-1]
        
        sgn_delta_faces_ds = torch.sign(delta_faces_pts_ds) ### sign of faces_ds
        sgn_prev_delta_faces_ds = torch.sign(prev_delta_faces_pts_ds) ### sign of prev_faces_ds
        ### different signs ###
        collision_pts_faces = (sgn_delta_faces_ds != sgn_prev_delta_faces_ds).float() ### n_pts x n_faces 

        cur_delta_faces_pts_ds = delta_faces_pts_ds

        collision_dists = collision_pts_faces * cur_delta_faces_pts_ds ### n_pts x n_faces
        ### collision_dists ### n_pts x n_faces
        ### i think the sim step 
        ### whether tow meshes collide with each other: in the target mesh, 
        ### collision_pulse, collision_dists
        collision_pulse = 1.0 * (collision_dists * pts_in_faces * non_collided_pts.unsqueeze(-1)).unsqueeze(-1) * sel_faces_vns2.unsqueeze(0).detach().cpu() ### n_pts x n_faces x 3 --> pulse
        
        collided_indicator = ((pts_in_faces * non_collided_pts.unsqueeze(-1) * collision_pts_faces).sum(-1) > 0.1).float()

        ### loss version v2: for pts directly ### ### calculate collision_loss from collision_pulse and pts ###
        collision_loss = torch.sum(collision_pulse.cuda() * pts.unsqueeze(1), dim=-1) ### n_pts x n_faces ### 
        ### loss version v2: for pts directly ###
        
        
        non_collided_indicator = 1.0  - collided_indicator # - (collision_pulse.sum(-1).sum(-1) > 1e-6).float()
        # print(f"collision_pulse: {collision_pulse.size()}, collided_indicator: {collided_indicator.size()}, non_collided_pts: {non_collided_pts.size()}")
        # non_collided_pts[collided_indicator] = non_collided_pts[collided_indicator] * 0.
        non_collided_pts = non_collided_pts * non_collided_indicator
        # print(f"collision_loss: {collision_loss.sum().mean().item()}, collided_indicator: {collided_indicator.sum(-1).item()}, non_collided_pts: {non_collided_pts.sum(-1).item()}")
        
        # ### loss version v2: for pts directly ###
        # collision_loss = torch.sum(collision_pulse * pts.unsqueeze(1), dim=-1) ### n_pts x n_faces ### 
        # ### loss version v2: for pts directly ###
        collision_loss = torch.sum(collision_loss, dim=-1).sum() ###  ## for all faces ###
        tot_collision_loss += collision_loss
        # if early_stop and collision_loss.item() > 0.0001:
        #   break


    delta_faces_pts_ds_sequence.append(delta_faces_pts_ds.clone())
    pts_in_faces_sequence.append(pts_in_faces.clone())
    keypts_sequence.append(pts.clone())
    
  # tot_collision_loss /= n_sim_steps
    ### delta_faces_
    # if 
    
  # print(f"tot_collision_loss: {tot_collision_loss}")
    
  ### can even test for one part at first
  return tot_collision_loss, keypts_sequence, mesh_pts_sequence ### collision_loss for all sim steps ###