File size: 3,220 Bytes
d6d3a5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import matplotlib.cm as cm
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image

# connection between the 8 points of 3d bbox
BONES_3D_BBOX = [
    (0, 1),
    (1, 2),
    (2, 3),
    (3, 0),
    (0, 4),
    (1, 5),
    (2, 6),
    (3, 7),
    (4, 5),
    (5, 6),
    (6, 7),
    (7, 4),
]


def plot_2d_bbox(bbox_2d, bones, color, ax):
    if ax is None:
        axx = plt
    else:
        axx = ax
    colors = cm.rainbow(np.linspace(0, 1, len(bbox_2d)))
    for pt, c in zip(bbox_2d, colors):
        axx.scatter(pt[0], pt[1], color=c, s=50)

    if bones is None:
        bones = BONES_3D_BBOX
    for bone in bones:
        sidx, eidx = bone
        # bottom of bbox is white
        if min(sidx, eidx) >= 4:
            color = "w"
        axx.plot(
            [bbox_2d[sidx][0], bbox_2d[eidx][0]],
            [bbox_2d[sidx][1], bbox_2d[eidx][1]],
            color,
        )
    return axx


# http://www.icare.univ-lille1.fr/tutorials/convert_a_matplotlib_figure
def fig2data(fig):
    """
    @brief Convert a Matplotlib figure to a 4D
    numpy array with RGBA channels and return it
    @param fig a matplotlib figure
    @return a numpy 3D array of RGBA values
    """
    # draw the renderer
    fig.canvas.draw()

    # Get the RGBA buffer from the figure
    w, h = fig.canvas.get_width_height()
    buf = np.frombuffer(fig.canvas.tostring_argb(), dtype=np.uint8)
    buf.shape = (w, h, 4)

    # canvas.tostring_argb give pixmap in ARGB mode.
    # Roll the ALPHA channel to have it in RGBA mode
    buf = np.roll(buf, 3, axis=2)
    return buf


# http://www.icare.univ-lille1.fr/tutorials/convert_a_matplotlib_figure
def fig2img(fig):
    """
    @brief Convert a Matplotlib figure to a PIL Image
    in RGBA format and return it
    @param fig a matplotlib figure
    @return a Python Imaging Library ( PIL ) image
    """
    # put the figure pixmap into a numpy array
    buf = fig2data(fig)
    w, h, _ = buf.shape
    return Image.frombytes("RGBA", (w, h), buf.tobytes())


def concat_pil_images(images):
    """
    Put a list of PIL images next to each other
    """
    assert isinstance(images, list)
    widths, heights = zip(*(i.size for i in images))

    total_width = sum(widths)
    max_height = max(heights)

    new_im = Image.new("RGB", (total_width, max_height))

    x_offset = 0
    for im in images:
        new_im.paste(im, (x_offset, 0))
        x_offset += im.size[0]
    return new_im


def stack_pil_images(images):
    """
    Stack a list of PIL images next to each other
    """
    assert isinstance(images, list)
    widths, heights = zip(*(i.size for i in images))

    total_height = sum(heights)
    max_width = max(widths)

    new_im = Image.new("RGB", (max_width, total_height))

    y_offset = 0
    for im in images:
        new_im.paste(im, (0, y_offset))
        y_offset += im.size[1]
    return new_im


def im_list_to_plt(image_list, figsize, title_list=None):
    fig, axes = plt.subplots(nrows=1, ncols=len(image_list), figsize=figsize)
    for idx, (ax, im) in enumerate(zip(axes, image_list)):
        ax.imshow(im)
        ax.set_title(title_list[idx])
    fig.tight_layout()
    im = fig2img(fig)
    plt.close()
    return im