Spaces:
Runtime error
Runtime error
File size: 3,707 Bytes
f631117 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
"""
A model worker executes the model.
"""
import argparse
import json
import uuid
from fastapi import FastAPI, Request
from fastapi.responses import StreamingResponse
from transformers import AutoModel, AutoTokenizer
import torch
import uvicorn
from transformers.generation.streamers import BaseStreamer
from threading import Thread
from queue import Queue
class TokenStreamer(BaseStreamer):
def __init__(self, skip_prompt: bool = False, timeout=None):
self.skip_prompt = skip_prompt
# variables used in the streaming process
self.token_queue = Queue()
self.stop_signal = None
self.next_tokens_are_prompt = True
self.timeout = timeout
def put(self, value):
if len(value.shape) > 1 and value.shape[0] > 1:
raise ValueError("TextStreamer only supports batch size 1")
elif len(value.shape) > 1:
value = value[0]
if self.skip_prompt and self.next_tokens_are_prompt:
self.next_tokens_are_prompt = False
return
for token in value.tolist():
self.token_queue.put(token)
def end(self):
self.token_queue.put(self.stop_signal)
def __iter__(self):
return self
def __next__(self):
value = self.token_queue.get(timeout=self.timeout)
if value == self.stop_signal:
raise StopIteration()
else:
return value
class ModelWorker:
def __init__(self, model_path, device='cuda'):
self.device = device
self.glm_model = AutoModel.from_pretrained(model_path, trust_remote_code=True,
device=device).to(device).eval()
self.glm_tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
@torch.inference_mode()
def generate_stream(self, params):
tokenizer, model = self.glm_tokenizer, self.glm_model
prompt = params["prompt"]
temperature = float(params.get("temperature", 1.0))
top_p = float(params.get("top_p", 1.0))
max_new_tokens = int(params.get("max_new_tokens", 256))
inputs = tokenizer([prompt], return_tensors="pt")
inputs = inputs.to(self.device)
streamer = TokenStreamer(skip_prompt=True)
thread = Thread(target=model.generate,
kwargs=dict(**inputs, max_new_tokens=int(max_new_tokens),
temperature=float(temperature), top_p=float(top_p),
streamer=streamer))
thread.start()
for token_id in streamer:
yield (json.dumps({"token_id": token_id, "error_code": 0}) + "\n").encode()
def generate_stream_gate(self, params):
try:
for x in self.generate_stream(params):
yield x
except Exception as e:
print("Caught Unknown Error", e)
ret = {
"text": "Server Error",
"error_code": 1,
}
yield (json.dumps(ret)+ "\n").encode()
app = FastAPI()
@app.post("/generate_stream")
async def generate_stream(request: Request):
params = await request.json()
generator = worker.generate_stream_gate(params)
return StreamingResponse(generator)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=10000)
parser.add_argument("--model-path", type=str, default="THUDM/glm-4-voice-9b")
args = parser.parse_args()
worker = ModelWorker(args.model_path)
uvicorn.run(app, host=args.host, port=args.port, log_level="info")
|