Spaces:
Running
Running
File size: 2,264 Bytes
db84255 161cd5c db84255 161cd5c db84255 161cd5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import gradio as gr
import torch
import librosa
import numpy as np
from transformers import Wav2Vec2Model, Wav2Vec2Processor
import torch.nn as nn
# Define emotions
emotion_list = ['anger', 'disgust', 'fear', 'happy', 'neutral', 'sad']
# Define the model
class EmotionClassifier(nn.Module):
def __init__(self, num_classes):
super(EmotionClassifier, self).__init__()
self.wav2vec2 = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base')
encoder_layer = nn.TransformerEncoderLayer(d_model=self.wav2vec2.config.hidden_size, nhead=8, batch_first=True)
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=2)
self.classifier = nn.Linear(self.wav2vec2.config.hidden_size, num_classes)
def forward(self, input_values):
outputs = self.wav2vec2(input_values).last_hidden_state
encoded = self.transformer_encoder(outputs)
logits = self.classifier(encoded[:, 0, :])
return logits
# Load your trained model
model_path = "best_model_state_dict.pth"
num_classes = len(emotion_list)
model = EmotionClassifier(num_classes)
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
model.eval()
# Define processor
processor = Wav2Vec2Processor.from_pretrained('facebook/wav2vec2-base')
def predict_emotion(audio):
# Load and process audio
audio, sr = librosa.load(audio, sr=16000)
inputs = processor(audio, sampling_rate=sr, return_tensors="pt", padding=True).input_values
if inputs.ndimension() == 2: # Ensure correct input shape
inputs = inputs.squeeze(0)
with torch.no_grad():
logits = model(inputs.unsqueeze(0)).squeeze()
# Get predicted emotions
probabilities = torch.nn.functional.softmax(logits, dim=-1).cpu().numpy()
predictions = {emotion: float(prob) for emotion, prob in zip(emotion_list, probabilities)}
return predictions
# Create Gradio interface
interface = gr.Interface(
fn=predict_emotion,
inputs=gr.Audio(type="filepath"),
outputs=gr.Label(num_top_classes=3),
title="è¯éŸ³æƒ…感识别",
description="ä¸Šä¼ éŸ³é¢‘æ–‡ä»¶ï¼ˆ.wav 或 .mp3)或录制您的声音以预测情感。"
)
# Launch the app
if __name__ == "__main__":
interface.launch() |