File size: 6,448 Bytes
e9fbb59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import torch
from transformers import Pipeline
from PIL import Image
from typing import Union
from copy import deepcopy
import matplotlib.pyplot as plt
import io

class VLEForVQAPipeline(Pipeline):

    def __init__(self, vle_processor, *args, **kwargs):        
        self.vle_processor = vle_processor
        super().__init__(*args, **kwargs)

    def _sanitize_parameters(self, top_k=None, **kwargs):
        preprocess_params, forward_params, postprocess_params = {}, {}, {}
        if top_k is not None:
            postprocess_params["top_k"] = top_k
        return preprocess_params, forward_params, postprocess_params

    def __call__(self, image: Union["Image.Image", str], question: str = None, **kwargs):

        if isinstance(image, (Image.Image, str)) and isinstance(question, str):
            inputs = {"image": image, "question": question}
        else:
            """
            Supports the following format
            - {"image": image, "question": question}
            - [{"image": image, "question": question}]
            - Generator and datasets
            """
            inputs = image
        results = super().__call__(inputs, **kwargs)
        return results

    def preprocess(self, inputs):
        model_inputs = self.vle_processor(text=inputs['question'], images=inputs['image'], return_tensors="pt",padding=True)
        return model_inputs

    def _forward(self, model_inputs):
        model_outputs = self.model(**model_inputs)
        return model_outputs

    def postprocess(self, model_outputs, top_k=1):
        if top_k > self.model.num_vqa_labels:
            top_k = self.model.num_vqa_labels
        probs = torch.softmax(model_outputs['logits'], dim=-1)
        probs, preds = torch.sort(probs, descending=True)
        probs = probs[:,:top_k].tolist()[0]
        preds = preds[:,:top_k].tolist()[0]

        return [{"score": score, "answer": self.model.config.id2label[pred]} for score, pred in zip(probs, preds)]



class VLEForPBCPipeline(Pipeline):
    def __init__(self, vle_processor, *args, **kwargs):        
        self.vle_processor = vle_processor
        self.id2label = {0:"False",1:"True"}
        super().__init__(*args, **kwargs)

    def _sanitize_parameters(self, **kwargs):
        preprocess_params, forward_params, postprocess_params = {}, {}, {}
        return preprocess_params, forward_params, postprocess_params

    def __call__(self, image: Union["Image.Image", str], text: str = None, **kwargs):
        if isinstance(image, (Image.Image, str)) and isinstance(text, str):
            inputs = {"image": image, "text": text}
        else:
            """
            Supports the following format
            - {"image": image, "text": text}
            - [{"image": image, "text": text}]
            - Generator and datasets
            """
            inputs = image
        results = super().__call__(inputs, **kwargs)
        return results

    def preprocess(self, inputs):
        model_inputs = self.vle_processor(text=inputs['text'], images=inputs['image'], return_tensors="pt",padding=True)
        return model_inputs, inputs['image']

    def _forward(self, model_inputs):
        model_outputs = self.model(**model_inputs[0])
        return model_outputs, model_inputs[1]

    def postprocess(self, model_outputs):
        probs = torch.softmax(model_outputs[0]['logits'], dim=-1)
        probs = probs.tolist()[0]
        new_image = self.paint_in_image(model_outputs[0]['logits'], model_outputs[1])
        return {"score": probs, "image": new_image}
    
    def paint_in_image(self, logits, raw_image):
        image_back = deepcopy(raw_image)
        raw_image_size = image_back.size
        resized_image_size = self.model.config.vision_config.image_size
        patch_size = self.model.config.vision_config.patch_size
        probs = torch.softmax(logits.detach()[0,:,1].to('cpu'),dim=-1).numpy().reshape(-1, resized_image_size//patch_size)

        plt.close('all')
        plt.axis('off')
        plt.imshow(probs, cmap='gray', interpolation='None', vmin=(probs.max()-probs.min())*2/5+probs.min(),alpha=0.7)
        plt.xticks([])
        plt.yticks([])
        buf = io.BytesIO()
        plt.savefig(buf, dpi=100, transparent=True, bbox_inches='tight', pad_inches=0)
        image_front = Image.open(buf)

        def filter_image_front(img: Image.Image):
            width, height = img.width, img.height
            for x in range(width):
                for y in range(height):
                    r,g,b,a = img.getpixel((x,y))
                    a = int (a * (1-r/255))
                    img.putpixel((x,y), (r,g,b,a))
            return img
        
        image_front = filter_image_front(image_front).resize(raw_image_size)
        image_back.paste(image_front, (0,0), image_front)
        mixed_image = image_back.resize(raw_image_size)
        buf.close()

        return mixed_image



class VLEForITMPipeline(Pipeline):
    def __init__(self, vle_processor, *args, **kwargs):        
        self.vle_processor = vle_processor
        self.id2label = {0:"False",1:"True"}
        super().__init__(*args, **kwargs)

    def _sanitize_parameters(self, **kwargs):
        preprocess_params, forward_params, postprocess_params = {}, {}, {}
        return preprocess_params, forward_params, postprocess_params

    def __call__(self, image: Union["Image.Image", str], text: str = None, **kwargs):
        if isinstance(image, (Image.Image, str)) and isinstance(text, str):
            inputs = {"image": image, "text": text}
        else:
            """
            Supports the following format
            - {"image": image, "text": text}
            - [{"image": image, "text": text}]
            - Generator and datasets
            """
            inputs = image
        results = super().__call__(inputs, **kwargs)
        return results

    def preprocess(self, inputs):
        model_inputs = self.vle_processor(text=inputs['text'], images=inputs['image'], return_tensors="pt",padding=True)
        return model_inputs

    def _forward(self, model_inputs):
        model_outputs = self.model(**model_inputs)
        return model_outputs

    def postprocess(self, model_outputs):
        probs = torch.softmax(model_outputs['logits'], dim=-1)
        preds = torch.argmax(probs, dim=-1)
        probs = probs.tolist()[0]
        preds = self.id2label[preds.tolist()[0]]

        return {"score": probs, "match": preds}