Spaces:
Runtime error
Runtime error
File size: 5,584 Bytes
e9fbb59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
# coding=utf-8
# Copyright The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" VLE model configuration"""
import copy
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
from transformers.models.auto.configuration_auto import AutoConfig
from transformers.models.clip.configuration_clip import CLIPVisionConfig
from typing import Union, Dict
logger = logging.get_logger(__name__)
class VLEConfig(PretrainedConfig):
r"""
[`VLEConfig`] is the configuration class to store the configuration of a
[`VLEModel`]. It is used to instantiate [`VLEModel`] model according to the
specified arguments, defining the text model and vision model configs.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`dict`):
Dictionary of configuration options that defines text model config.
vision_config (`dict`):
Dictionary of configuration options that defines vison model config.
#TODO
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
The inital value of the *logit_scale* paramter. Default is used as per the original CLIP implementation.
kwargs (*optional*):
Dictionary of keyword arguments.
Examples:
```python
>>> from transformers import ViTConfig, BertConfig
>>> from configuration_vle import VLEconfig
>>> from modeling_vle import VLEModel
>>> # Initializing a BERT and ViT configuration
>>> config_vision = ViTConfig()
>>> config_text = BertConfig()
>>> config = VLEConfig.from_vision_text_configs(config_vision, config_text) #TODO
>>> # Initializing a BERT and ViT model (with random weights)
>>> model = VLEModel(config=config)
>>> # Accessing the model configuration
>>> config_vision = model.config.vision_config
>>> config_text = model.config.text_config
>>> # Saving the model, including its configuration
>>> model.save_pretrained("vit-bert")
>>> # loading model and config from pretrained folder
>>> vision_text_config = VLEConfig.from_pretrained("vit-bert")
>>> model = VLEModel.from_pretrained("vit-bert", config=vision_text_config)
```"""
model_type = "vle"
is_composition = True
def __init__(
self,
text_config: Union[PretrainedConfig, Dict],
vision_config: Union[PretrainedConfig, Dict],
num_token_types=2,
hidden_size=768,
num_hidden_layers=6,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
initializer_range=0.02,
layer_norm_eps=1e-12,
classifier_dropout=None,
**kwargs):
super().__init__(**kwargs)
if not isinstance(text_config,PretrainedConfig):
text_model_type = text_config.pop('model_type')
text_config = AutoConfig.for_model(text_model_type, **text_config)
self.text_config = text_config
if not isinstance(vision_config, PretrainedConfig):
vision_model_type = vision_config.pop('model_type')
if vision_model_type == "clip":
vision_config = AutoConfig.for_model(vision_model_type, **vision_config).vision_config
elif vision_model_type == "clip_vision_model":
vision_config = CLIPVisionConfig(**vision_config)
else:
vision_config = AutoConfig.for_model(vision_model_type, **vision_config)
self.vision_config = vision_config
else:
vision_model_type = vision_config.model_type
if vision_model_type== "clip":
vision_config = vision_config.vision_config
self.vision_config = vision_config
# co-attention
self.num_token_types=num_token_types
self.hidden_size=hidden_size
self.num_hidden_layers=num_hidden_layers
self.num_attention_heads=num_attention_heads
self.intermediate_size=intermediate_size
self.hidden_act=hidden_act
self.hidden_dropout_prob=hidden_dropout_prob
self.attention_probs_dropout_prob=attention_probs_dropout_prob
self.initializer_range=initializer_range
self.layer_norm_eps=layer_norm_eps
self.classifier_dropout=classifier_dropout
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = copy.deepcopy(self.__dict__)
output["vision_config"] = self.vision_config.to_dict()
output["text_config"] = self.text_config.to_dict()
output["model_type"] = self.__class__.model_type
return output
|