File size: 2,498 Bytes
7d52396 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
import torch
def test_lora_layer_replacement(lit_llama):
from lit_llama.lora import lora, CausalSelfAttention as LoRACausalSelfAttention
from lit_llama.model import LLaMA, LLaMAConfig
config = LLaMAConfig()
config.n_layer = 2
config.n_head = 4
config.n_embd = 8
config.block_size = 8
config.vocab_size = 8
with lora(r=8, alpha=8, dropout=0.1):
model = LLaMA(config)
assert isinstance(model.transformer.h[0].attn, LoRACausalSelfAttention)
assert isinstance(model.transformer.h[1].attn, LoRACausalSelfAttention)
def test_lora_merge_unmerge(lit_llama):
from lit_llama.lora import lora, mark_only_lora_as_trainable
from lit_llama.model import LLaMA, LLaMAConfig
config = LLaMAConfig(n_layer=1, n_head=2, n_embd=8, block_size=8, vocab_size=8)
with lora(r=8, alpha=8, dropout=0.1):
model = LLaMA(config)
initial_weight = model.transformer.h[0].attn.c_attn.weight.clone()
model.train()
assert torch.equal(model.transformer.h[0].attn.c_attn.weight, initial_weight)
# perform an update to the LoRA weights
mark_only_lora_as_trainable(model)
optimizer = torch.optim.SGD(model.parameters(), lr=1.0)
model(torch.randint(0, 8, size=(2, 4), dtype=torch.int64)).sum().backward()
optimizer.step()
optimizer.zero_grad()
# the weight remains unchanged (only lora A and B change)
assert torch.equal(model.transformer.h[0].attn.c_attn.weight, initial_weight)
# 'merge' and then 'unmerge' should neutralize themselves
weight_before = model.transformer.h[0].attn.c_attn.weight.clone()
model.eval()
assert not torch.equal(model.transformer.h[0].attn.c_attn.weight, weight_before)
model.train()
# note: numerically, `W + (A * B) - (A * B) == W` does not hold exactly
assert torch.allclose(model.transformer.h[0].attn.c_attn.weight, weight_before)
# calling eval/train multiple times in a row should not merge/unmerge multiple times
model.eval()
assert model.transformer.h[0].attn.c_attn.merged
weight_after = model.transformer.h[0].attn.c_attn.weight.clone()
model.eval()
model.eval()
assert torch.equal(model.transformer.h[0].attn.c_attn.weight, weight_after)
model.train()
assert not model.transformer.h[0].attn.c_attn.merged
weight_after = model.transformer.h[0].attn.c_attn.weight.clone()
model.train()
model.train()
assert torch.equal(model.transformer.h[0].attn.c_attn.weight, weight_after)
|