File size: 6,969 Bytes
5d62d66
 
 
 
ec09e34
5d62d66
ec09e34
 
 
 
81ff9a6
 
ec09e34
 
 
 
 
 
5d62d66
 
 
 
 
 
 
2b6f2c0
5d62d66
 
ec09e34
1047033
ec09e34
 
 
 
81ff9a6
ec09e34
 
 
 
 
 
 
 
 
 
 
 
5d62d66
ec09e34
 
 
 
 
 
 
 
 
5d62d66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0abca8
 
 
 
ec09e34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d62d66
 
 
 
a54afbe
 
81ff9a6
 
 
 
 
 
a54afbe
5d62d66
 
 
 
 
ec09e34
 
5d62d66
 
 
d0abca8
 
 
5d62d66
 
 
 
 
 
 
 
d0abca8
 
5d62d66
 
 
 
 
 
 
 
 
 
 
d0abca8
5d62d66
d0abca8
5d62d66
 
 
 
 
 
d0abca8
5d62d66
d0abca8
5d62d66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import sys
import time
import warnings
from pathlib import Path
from typing import Optional

import lightning as L
import torch

# support running without installing as a package
# wd = Path(__file__).parent.parent.resolve()
# sys.path.append(str(wd))

from generate import generate
from lit_llama import Tokenizer
from lit_llama.adapter import LLaMA
from lit_llama.utils import EmptyInitOnDevice, lazy_load, llama_model_lookup
from scripts.prepare_alpaca import generate_prompt

# 配置hugface环境
from huggingface_hub import hf_hub_download
import gradio as gr
import os
import glob
import json


# os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
torch.set_float32_matmul_precision("high")
# quantize: Optional[str] = "llm.int8",

def model_load(
    adapter_path: Path = Path("out/adapter/alpaca/lit-llama-adapter-finetuned_15k.pth"),
    pretrained_path: Path = Path("checkpoints/lit-llama/7B/lit-llama.pth"),
    quantize: Optional[str] = "llm.int8",
):

    fabric = L.Fabric(devices=1)
    dtype = torch.bfloat16 if fabric.device.type == "cuda" and torch.cuda.is_bf16_supported() else torch.float32

    with lazy_load(pretrained_path) as pretrained_checkpoint, lazy_load(adapter_path) as adapter_checkpoint:
        name = llama_model_lookup(pretrained_checkpoint)

        with EmptyInitOnDevice(
                device=fabric.device, dtype=dtype, quantization_mode=quantize
        ):
            model = LLaMA.from_name(name)

        # 1. Load the pretrained weights
        model.load_state_dict(pretrained_checkpoint, strict=False)
        # 2. Load the fine-tuned adapter weights
        model.load_state_dict(adapter_checkpoint, strict=False)

    model.eval()
    model = fabric.setup_module(model)

    return model


def instruct_generate(
    img_path: str = " ",
    prompt: str = "What food do lamas eat?",
    input: str = "",
    max_new_tokens: int = 100,
    top_k: int = 200,
    temperature: float = 0.8,
) -> None:
    """Generates a response based on a given instruction and an optional input.
    This script will only work with checkpoints from the instruction-tuned LLaMA-Adapter model.
    See `finetune_adapter.py`.

    Args:
        prompt: The prompt/instruction (Alpaca style).
        adapter_path: Path to the checkpoint with trained adapter weights, which are the output of
            `finetune_adapter.py`.
        input: Optional input (Alpaca style).
        pretrained_path: The path to the checkpoint with pretrained LLaMA weights.
        tokenizer_path: The tokenizer path to load.
        quantize: Whether to quantize the model and using which method:
            ``"llm.int8"``: LLM.int8() mode,
            ``"gptq.int4"``: GPTQ 4-bit mode.
        max_new_tokens: The number of generation steps to take.
        top_k: The number of top most probable tokens to consider in the sampling process.
        temperature: A value controlling the randomness of the sampling process. Higher values result in more random
    """
    if input in input_value_2_real.keys():
        input = input_value_2_real[input]
    if "..." in input:
        input = input.replace("...", "")
    sample = {"instruction": prompt, "input": input}
    prompt = generate_prompt(sample)
    encoded = tokenizer.encode(prompt, bos=True, eos=False, device=model.device)
    # prompt_length = encoded.size(0)

    y = generate(
        model,
        idx=encoded,
        max_seq_length=max_new_tokens,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        top_k=top_k,
        eos_id=tokenizer.eos_id
    )

    output = tokenizer.decode(y)
    output = output.split("### Response:")[1].strip()
    print(output)
    return output

# 配置具体参数
# pretrained_path = hf_hub_download(
#     repo_id="Gary3410/pretrain_lit_llama", filename="lit-llama.pth")
# tokenizer_path = hf_hub_download(
#     repo_id="Gary3410/pretrain_lit_llama", filename="tokenizer.model")
# adapter_path = hf_hub_download(
#     repo_id="Gary3410/pretrain_lit_llama", filename="lit-llama-adapter-finetuned_15k.pth")
adapter_path = "lit-llama-adapter-finetuned_15k.pth"
tokenizer_path = "tokenizer.model"
pretrained_path = "lit-llama.pth"
example_path = "example.json"
# 1024如果不够, 调整为512
max_seq_len = 1024
max_batch_size = 1

model = model_load(adapter_path, pretrained_path)
tokenizer = Tokenizer(tokenizer_path)
with open(example_path, 'r') as f:
    content = f.read()
    example_dict = json.loads(content)
input_value_2_real = {}
for scene_id, scene_dict in example_dict.items():
    input_value_2_real[scene_dict["input_display"]] = scene_dict["input"]

def create_instruct_demo():
    with gr.Blocks() as instruct_demo:
        with gr.Row():
            with gr.Column():
                scene_img = gr.Image(label='Scene', type='filepath')
                instruction = gr.Textbox(
                    lines=2, label="Instruction")
                object_list = gr.Textbox(
                    lines=5, label="Input")
                max_len = gr.Slider(minimum=1, maximum=512,
                                    value=128, label="Max length")
                with gr.Accordion(label='Advanced options', open=False):
                    temp = gr.Slider(minimum=0, maximum=1,
                                     value=0.8, label="Temperature")
                    top_k = gr.Slider(minimum=100, maximum=300,
                                      value=200, label="Top k")

                run_botton = gr.Button("Run")

            with gr.Column():
                outputs = gr.Textbox(lines=20, label="Output")

        inputs = [scene_img, instruction, object_list, max_len, top_k, temp]

        # 接下来设定具体的example格式
        examples_img_list = glob.glob("caption_demo/*.png")
        examples = []
        for example_img_one in examples_img_list:
            scene_name = os.path.basename(example_img_one).split(".")[0]
            example_object_list = example_dict[scene_name]["input_display"]
            example_instruction = example_dict[scene_name]["instruction"]
            example_one = [example_img_one, example_instruction, example_object_list, 512, 0.8, 200]
            examples.append(example_one)

        gr.Examples(
            examples=examples,
            inputs=inputs,
            outputs=outputs,
            fn=instruct_generate,
            cache_examples=os.getenv('SYSTEM') == 'spaces'
        )
        run_botton.click(fn=instruct_generate, inputs=inputs, outputs=outputs)
    return instruct_demo


# Please refer to our [arXiv paper](https://arxiv.org/abs/2303.16199) and [github](https://github.com/ZrrSkywalker/LLaMA-Adapter) for more details.
description = """
# TaPA
The official demo for **Embodied Task Planning with Large Language Models**.
"""

with gr.Blocks(css='style.css') as demo:
    gr.Markdown(description)
    with gr.TabItem("Instruction-Following"):
        create_instruct_demo()

demo.queue(api_open=True, concurrency_count=1).launch()