File size: 7,378 Bytes
5d62d66 ec09e34 5d62d66 ec09e34 fe3c026 ec09e34 5d62d66 2b6f2c0 5d62d66 ec09e34 1047033 ec09e34 fe3c026 ec09e34 5d62d66 ec09e34 5d62d66 b92f949 5d62d66 d0abca8 ec09e34 85e24d4 ec09e34 5d62d66 a54afbe 81ff9a6 a54afbe 5d62d66 ec09e34 5d62d66 d0abca8 5d62d66 c9eccf3 d0abca8 c9eccf3 e1cc733 c9eccf3 5d62d66 d0abca8 5d62d66 9cfe815 c9eccf3 5d62d66 c9eccf3 5d62d66 c9eccf3 5d62d66 c9eccf3 5d62d66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import sys
import time
import warnings
from pathlib import Path
from typing import Optional
import lightning as L
import torch
# support running without installing as a package
wd = Path(__file__).parent.parent.resolve()
sys.path.append(str(wd))
from generate import generate
from lit_llama import Tokenizer
from lit_llama.adapter import LLaMA
from lit_llama.utils import EmptyInitOnDevice, lazy_load, llama_model_lookup
from scripts.prepare_alpaca import generate_prompt
# 配置hugface环境
from huggingface_hub import hf_hub_download
import gradio as gr
import os
import glob
import json
# os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
torch.set_float32_matmul_precision("high")
# quantize: Optional[str] = "llm.int8",
def model_load(
adapter_path: Path = Path("out/adapter/alpaca/lit-llama-adapter-finetuned_15k.pth"),
pretrained_path: Path = Path("checkpoints/lit-llama/7B/lit-llama.pth"),
quantize: Optional[str] = None,
):
fabric = L.Fabric(devices=1)
dtype = torch.bfloat16 if fabric.device.type == "cuda" and torch.cuda.is_bf16_supported() else torch.float32
with lazy_load(pretrained_path) as pretrained_checkpoint, lazy_load(adapter_path) as adapter_checkpoint:
name = llama_model_lookup(pretrained_checkpoint)
with EmptyInitOnDevice(
device=fabric.device, dtype=dtype, quantization_mode=quantize
):
model = LLaMA.from_name(name)
# 1. Load the pretrained weights
model.load_state_dict(pretrained_checkpoint, strict=False)
# 2. Load the fine-tuned adapter weights
model.load_state_dict(adapter_checkpoint, strict=False)
model.eval()
model = fabric.setup_module(model)
return model
def instruct_generate(
img_path: str = " ",
prompt: str = "What food do lamas eat?",
input: str = "",
max_new_tokens: int = 100,
temperature: float = 0.8,
top_k: int = 200,
) -> None:
"""Generates a response based on a given instruction and an optional input.
This script will only work with checkpoints from the instruction-tuned LLaMA-Adapter model.
See `finetune_adapter.py`.
Args:
prompt: The prompt/instruction (Alpaca style).
adapter_path: Path to the checkpoint with trained adapter weights, which are the output of
`finetune_adapter.py`.
input: Optional input (Alpaca style).
pretrained_path: The path to the checkpoint with pretrained LLaMA weights.
tokenizer_path: The tokenizer path to load.
quantize: Whether to quantize the model and using which method:
``"llm.int8"``: LLM.int8() mode,
``"gptq.int4"``: GPTQ 4-bit mode.
max_new_tokens: The number of generation steps to take.
top_k: The number of top most probable tokens to consider in the sampling process.
temperature: A value controlling the randomness of the sampling process. Higher values result in more random
"""
if input in input_value_2_real.keys():
input = input_value_2_real[input]
if "..." in input:
input = input.replace("...", "")
sample = {"instruction": prompt, "input": input}
prompt = generate_prompt(sample)
encoded = tokenizer.encode(prompt, bos=True, eos=False, device=model.device)
# prompt_length = encoded.size(0)
y = generate(
model,
idx=encoded,
max_seq_length=max_new_tokens,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_k=top_k,
eos_id=tokenizer.eos_id
)
# y = generate(model, encoded, max_new_tokens, temperature=temperature, top_k=top_k, eos_id=tokenizer.eos_id)
output = tokenizer.decode(y)
output = output.split("### Response:")[1].strip()
print(output)
return output
# 配置具体参数
# pretrained_path = hf_hub_download(
# repo_id="Gary3410/pretrain_lit_llama", filename="lit-llama.pth")
# tokenizer_path = hf_hub_download(
# repo_id="Gary3410/pretrain_lit_llama", filename="tokenizer.model")
# adapter_path = hf_hub_download(
# repo_id="Gary3410/pretrain_lit_llama", filename="lit-llama-adapter-finetuned_15k.pth")
adapter_path = "lit-llama-adapter-finetuned_15k.pth"
tokenizer_path = "tokenizer.model"
pretrained_path = "lit-llama.pth"
example_path = "example.json"
# 1024如果不够, 调整为512
max_seq_len = 1024
max_batch_size = 1
model = model_load(adapter_path, pretrained_path)
tokenizer = Tokenizer(tokenizer_path)
with open(example_path, 'r') as f:
content = f.read()
example_dict = json.loads(content)
input_value_2_real = {}
for scene_id, scene_dict in example_dict.items():
input_value_2_real[scene_dict["input_display"]] = scene_dict["input"]
def create_instruct_demo():
with gr.Blocks() as instruct_demo:
with gr.Row():
with gr.Column():
scene_img = gr.Image(label='Scene', type='filepath', shape=(1024, 320), height=320, width=1024, interactive=False)
object_list = gr.Textbox(
lines=5, label="Object List", placeholder="Please click one from the examples below", interactive=False)
instruction = gr.Textbox(
lines=2, label="Instruction", placeholder="Please input the instruction. E.g.Please turn on the lamp")
max_len = gr.Slider(minimum=256, maximum=1024,
value=1024, label="Max length")
with gr.Accordion(label='Advanced options', open=False):
temp = gr.Slider(minimum=0, maximum=1,
value=0.8, label="Temperature")
top_k = gr.Slider(minimum=100, maximum=300,
value=200, label="Top k")
run_botton = gr.Button("Run")
with gr.Column():
outputs = gr.Textbox(lines=20, label="Output")
inputs = [scene_img, instruction, object_list, max_len, temp, top_k]
# inputs = [scene_img, instruction, object_list]
# 接下来设定具体的example格式
examples_img_list = glob.glob("caption_demo/*.png")
examples = []
for example_img_one in examples_img_list:
scene_name = os.path.basename(example_img_one).split(".")[0]
example_object_list = example_dict[scene_name]["input"]
example_instruction = example_dict[scene_name]["instruction"]
example_one = [example_img_one, example_instruction, example_object_list]
examples.append(example_one)
gr.Examples(
examples=examples,
inputs=inputs,
outputs=outputs,
fn=instruct_generate,
cache_examples=os.getenv('SYSTEM') == 'spaces'
)
# inputs = inputs + [max_len, temp, top_k]
run_botton.click(fn=instruct_generate, inputs=inputs, outputs=outputs)
return instruct_demo
# Please refer to our [arXiv paper](https://arxiv.org/abs/2303.16199) and [github](https://github.com/ZrrSkywalker/LLaMA-Adapter) for more details.
description = """
# TaPA
The official demo for **Embodied Task Planning with Large Language Models**.
"""
with gr.Blocks(css='style.css') as demo:
gr.Markdown(description)
with gr.TabItem("Instruction-Following"):
create_instruct_demo()
demo.queue(api_open=True, concurrency_count=1).launch()
|