File size: 7,737 Bytes
7d52396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# This adapts GPTQ's quantization process: https://github.com/IST-DASLab/gptq/
# E. Frantar et al GPTQ: Accurate Post-training Compression for GPT, arXiv:2210.17323
# portions copyright by the authors licensed under the Apache License 2.0
import gc
import sys
import time
from pathlib import Path
from typing import Optional

import torch
from datasets import load_dataset

# support running without installing as a package
wd = Path(__file__).parent.parent.resolve()
sys.path.append(str(wd))

from lit_llama import LLaMA, Tokenizer
from lit_llama.quantization import GPTQQuantizer
from lit_llama.utils import EmptyInitOnDevice, llama_model_lookup


def get_sample_data():
    traindata = load_dataset(
        "allenai/c4",
        "allenai--c4",
        data_files={"train": "en/c4-train.00000-of-01024.json.gz"},
        split="train",
    )
    # heuristic for the data size?
    txt = "\n".join(
        traindata[i]["text"] for i in torch.randperm(len(traindata))[:1000].tolist()
    )
    return txt


@torch.no_grad()
def llama_blockwise_quantization(
    model, sample_inputs, working_device, *, bits=4, groupsize=-1
):
    """
    This is the classic post-training quantization of all linear layers.
    We quantize in order, i.e. when observing the inputs, we use the outputs of the previously quantized layers rather
    than doing them all at once.
    """
    print(model)
    print(model.config)

    print("Getting inputs for first block")
    model.transformer.wte.to(working_device)
    sample_inputs = sample_inputs.to(working_device)
    inps = model.transformer.wte(sample_inputs)
    model.transformer.wte.to("cpu")
    torch.cuda.empty_cache()

    rope_cache = model.build_rope_cache(sample_inputs)
    mask_cache = model.build_mask_cache(sample_inputs)

    print("Starting to quantize blocks")
    outs = torch.zeros_like(inps)

    # better than relying on enumeration? originally the code bundled
    # the two mlp fc layers
    # we could automate this with a lot of hooks and another iteration
    submodules_to_process = [
        "attn.c_attn",
        "attn.c_proj",
        "mlp.c_fc1",
        "mlp.c_fc2",
        "mlp.c_proj",
    ]

    for i, block in enumerate(model.transformer.h):
        block.to(working_device)

        for name in submodules_to_process:
            print(i, name, end=" ")
            t0 = time.perf_counter()
            print("collecting stats", end=" ")
            sys.stdout.flush()
            module = block.get_submodule(name)

            gptq = GPTQQuantizer(
                module,
                bits=bits,
                groupsize=groupsize,
                actorder=(groupsize == -1),
            )
            handle = module.register_forward_hook(gptq.collect_input_stats)
            for j in range(inps.size(0)):
                outs[j : j + 1], _ = block(
                    inps[j : j + 1],
                    rope=rope_cache,
                    mask=mask_cache,
                    max_seq_length=model.config.block_size
                )

            handle.remove()

            print("quantizing", end=" ")
            sys.stdout.flush()
            q_module, error = gptq.quantize()

            # replace the linear module with the quantized module
            pname, dname = name.rsplit(".", 1)
            setattr(block.get_submodule(pname), dname, q_module)

            # cleanup in an attempt to not run out of memory
            del gptq
            gc.collect()
            torch.cuda.empty_cache()
            t1 = time.perf_counter()
            print(f"time {int(t1 - t0 + 0.5)}s quantization error {error:.1f}")

        for j in range(inps.size(0)):
            outs[j : j + 1], _ = block(
                inps[j : j + 1],
                rope=rope_cache,
                mask=mask_cache,
                max_seq_length=model.config.block_size
            )

        block.cpu()
        gc.collect()
        torch.cuda.empty_cache()

        # the outputs are the next block's inputs and we'll reuse the old inputs
        inps, outs = outs, inps

    model.transformer.ln_f.to(working_device)
    for j in range(inps.size(0)):
        outs[j : j + 1] = model.transformer.ln_f(inps[j : j + 1])
    model.transformer.ln_f.to("cpu")
    inps, outs = outs, inps

    model.lm_head.to(working_device)
    gptq = GPTQQuantizer(
        model.lm_head,
        bits=bits,
        groupsize=groupsize,
        actorder=(groupsize == -1),
    )
    handle = model.lm_head.register_forward_hook(gptq.collect_input_stats)
    for j in range(inps.size(0)):
        model.lm_head(inps[j : j + 1])
    handle.remove()
    q_module, error = gptq.quantize()
    model.lm_head = q_module
    model.lm_head.to("cpu")


def main(
    *,
    checkpoint_path: Path = Path("checkpoints/lit-llama/7B/lit-llama.pth"),
    output_path: Optional[Path] = None,
    tokenizer_path: Path = Path("checkpoints/lit-llama/tokenizer.model"),
    n_samples: int = 128,
    dtype: str = "float32",
    quantize: Optional[str] = None,
) -> None:
    """Generates text samples based on a pre-trained LLaMA model and tokenizer.

    Args:
        checkpoint_path: The checkpoint path to load.
        output_path: Path to write the quantized model's state dict to.
        tokenizer_path: The tokenizer path to load.
        n_samples: Number of example inputs to use for statistics (default: 128)
        dtype: The dtype to use to load the model.
        quantize: Mode to quantize the model to:
            ``"gptq.int4"``: GPTQ 4-bit mode.
            Note that ``"llm.int8"```does not need a quantization step.
    """
    assert checkpoint_path.is_file()
    assert tokenizer_path.is_file()
    if output_path is None:
        output_path = checkpoint_path.parent / "llama-gptq.4bit.pth"
    assert output_path.parent.is_dir() and (not output_path.exists() or output_path.is_file())

    device = "cuda"

    dt = getattr(torch, dtype, None)
    if not isinstance(dt, torch.dtype):
        raise ValueError(f"{dtype} is not a valid dtype.")
    dtype = dt

    if quantize == "gptq.int4":
        bits = 4
    elif quantize == "gptq.int8":
        bits = 8
    else:
        raise RuntimeError(f"unknown/unsupported quantization mode {quantize}")

    # we avoid loading the entire model on the GPU and do this block by block
    with EmptyInitOnDevice(
        device="cpu",
        dtype=dtype,
    ):
        print("Loading model ...", file=sys.stderr)
        t0 = time.time()
        checkpoint = torch.load(checkpoint_path)
        name = llama_model_lookup(checkpoint)
        model = LLaMA.from_name(name)
        model.load_state_dict(checkpoint)
        print(f"Time to load model: {time.time() - t0:.02f} seconds.", file=sys.stderr)

    model.eval()

    tokenizer = Tokenizer(tokenizer_path)

    test_string = get_sample_data()
    encoded_text = tokenizer.encode(
        test_string,
        bos=True,
        eos=False,
    )
    block_size = 2048  # this is for compat with gptq, and indeed we get much worse beyond this (https://github.com/facebookresearch/llama/blob/57b0eb62de0636e75af471e49e2f1862d908d9d8/llama/model.py#L30)
    encoded_text = encoded_text[: n_samples * block_size].reshape(n_samples, block_size)

    t0 = time.perf_counter()
    llama_blockwise_quantization(model, encoded_text, device, bits=bits)
    t = time.perf_counter() - t0

    print(
        f"\n\nTime for quantization: {t:.02f} sec total",
        file=sys.stderr,
    )
    print(
        f"Memory used: {torch.cuda.max_memory_reserved() / 1e9:.02f} GB",
        file=sys.stderr,
    )

    torch.save(model.state_dict(), output_path)


if __name__ == "__main__":
    from jsonargparse import CLI

    torch.set_float32_matmul_precision("high")
    CLI(main)