File size: 7,737 Bytes
7d52396 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
# This adapts GPTQ's quantization process: https://github.com/IST-DASLab/gptq/
# E. Frantar et al GPTQ: Accurate Post-training Compression for GPT, arXiv:2210.17323
# portions copyright by the authors licensed under the Apache License 2.0
import gc
import sys
import time
from pathlib import Path
from typing import Optional
import torch
from datasets import load_dataset
# support running without installing as a package
wd = Path(__file__).parent.parent.resolve()
sys.path.append(str(wd))
from lit_llama import LLaMA, Tokenizer
from lit_llama.quantization import GPTQQuantizer
from lit_llama.utils import EmptyInitOnDevice, llama_model_lookup
def get_sample_data():
traindata = load_dataset(
"allenai/c4",
"allenai--c4",
data_files={"train": "en/c4-train.00000-of-01024.json.gz"},
split="train",
)
# heuristic for the data size?
txt = "\n".join(
traindata[i]["text"] for i in torch.randperm(len(traindata))[:1000].tolist()
)
return txt
@torch.no_grad()
def llama_blockwise_quantization(
model, sample_inputs, working_device, *, bits=4, groupsize=-1
):
"""
This is the classic post-training quantization of all linear layers.
We quantize in order, i.e. when observing the inputs, we use the outputs of the previously quantized layers rather
than doing them all at once.
"""
print(model)
print(model.config)
print("Getting inputs for first block")
model.transformer.wte.to(working_device)
sample_inputs = sample_inputs.to(working_device)
inps = model.transformer.wte(sample_inputs)
model.transformer.wte.to("cpu")
torch.cuda.empty_cache()
rope_cache = model.build_rope_cache(sample_inputs)
mask_cache = model.build_mask_cache(sample_inputs)
print("Starting to quantize blocks")
outs = torch.zeros_like(inps)
# better than relying on enumeration? originally the code bundled
# the two mlp fc layers
# we could automate this with a lot of hooks and another iteration
submodules_to_process = [
"attn.c_attn",
"attn.c_proj",
"mlp.c_fc1",
"mlp.c_fc2",
"mlp.c_proj",
]
for i, block in enumerate(model.transformer.h):
block.to(working_device)
for name in submodules_to_process:
print(i, name, end=" ")
t0 = time.perf_counter()
print("collecting stats", end=" ")
sys.stdout.flush()
module = block.get_submodule(name)
gptq = GPTQQuantizer(
module,
bits=bits,
groupsize=groupsize,
actorder=(groupsize == -1),
)
handle = module.register_forward_hook(gptq.collect_input_stats)
for j in range(inps.size(0)):
outs[j : j + 1], _ = block(
inps[j : j + 1],
rope=rope_cache,
mask=mask_cache,
max_seq_length=model.config.block_size
)
handle.remove()
print("quantizing", end=" ")
sys.stdout.flush()
q_module, error = gptq.quantize()
# replace the linear module with the quantized module
pname, dname = name.rsplit(".", 1)
setattr(block.get_submodule(pname), dname, q_module)
# cleanup in an attempt to not run out of memory
del gptq
gc.collect()
torch.cuda.empty_cache()
t1 = time.perf_counter()
print(f"time {int(t1 - t0 + 0.5)}s quantization error {error:.1f}")
for j in range(inps.size(0)):
outs[j : j + 1], _ = block(
inps[j : j + 1],
rope=rope_cache,
mask=mask_cache,
max_seq_length=model.config.block_size
)
block.cpu()
gc.collect()
torch.cuda.empty_cache()
# the outputs are the next block's inputs and we'll reuse the old inputs
inps, outs = outs, inps
model.transformer.ln_f.to(working_device)
for j in range(inps.size(0)):
outs[j : j + 1] = model.transformer.ln_f(inps[j : j + 1])
model.transformer.ln_f.to("cpu")
inps, outs = outs, inps
model.lm_head.to(working_device)
gptq = GPTQQuantizer(
model.lm_head,
bits=bits,
groupsize=groupsize,
actorder=(groupsize == -1),
)
handle = model.lm_head.register_forward_hook(gptq.collect_input_stats)
for j in range(inps.size(0)):
model.lm_head(inps[j : j + 1])
handle.remove()
q_module, error = gptq.quantize()
model.lm_head = q_module
model.lm_head.to("cpu")
def main(
*,
checkpoint_path: Path = Path("checkpoints/lit-llama/7B/lit-llama.pth"),
output_path: Optional[Path] = None,
tokenizer_path: Path = Path("checkpoints/lit-llama/tokenizer.model"),
n_samples: int = 128,
dtype: str = "float32",
quantize: Optional[str] = None,
) -> None:
"""Generates text samples based on a pre-trained LLaMA model and tokenizer.
Args:
checkpoint_path: The checkpoint path to load.
output_path: Path to write the quantized model's state dict to.
tokenizer_path: The tokenizer path to load.
n_samples: Number of example inputs to use for statistics (default: 128)
dtype: The dtype to use to load the model.
quantize: Mode to quantize the model to:
``"gptq.int4"``: GPTQ 4-bit mode.
Note that ``"llm.int8"```does not need a quantization step.
"""
assert checkpoint_path.is_file()
assert tokenizer_path.is_file()
if output_path is None:
output_path = checkpoint_path.parent / "llama-gptq.4bit.pth"
assert output_path.parent.is_dir() and (not output_path.exists() or output_path.is_file())
device = "cuda"
dt = getattr(torch, dtype, None)
if not isinstance(dt, torch.dtype):
raise ValueError(f"{dtype} is not a valid dtype.")
dtype = dt
if quantize == "gptq.int4":
bits = 4
elif quantize == "gptq.int8":
bits = 8
else:
raise RuntimeError(f"unknown/unsupported quantization mode {quantize}")
# we avoid loading the entire model on the GPU and do this block by block
with EmptyInitOnDevice(
device="cpu",
dtype=dtype,
):
print("Loading model ...", file=sys.stderr)
t0 = time.time()
checkpoint = torch.load(checkpoint_path)
name = llama_model_lookup(checkpoint)
model = LLaMA.from_name(name)
model.load_state_dict(checkpoint)
print(f"Time to load model: {time.time() - t0:.02f} seconds.", file=sys.stderr)
model.eval()
tokenizer = Tokenizer(tokenizer_path)
test_string = get_sample_data()
encoded_text = tokenizer.encode(
test_string,
bos=True,
eos=False,
)
block_size = 2048 # this is for compat with gptq, and indeed we get much worse beyond this (https://github.com/facebookresearch/llama/blob/57b0eb62de0636e75af471e49e2f1862d908d9d8/llama/model.py#L30)
encoded_text = encoded_text[: n_samples * block_size].reshape(n_samples, block_size)
t0 = time.perf_counter()
llama_blockwise_quantization(model, encoded_text, device, bits=bits)
t = time.perf_counter() - t0
print(
f"\n\nTime for quantization: {t:.02f} sec total",
file=sys.stderr,
)
print(
f"Memory used: {torch.cuda.max_memory_reserved() / 1e9:.02f} GB",
file=sys.stderr,
)
torch.save(model.state_dict(), output_path)
if __name__ == "__main__":
from jsonargparse import CLI
torch.set_float32_matmul_precision("high")
CLI(main)
|