File size: 5,186 Bytes
7d52396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
"""
This script is a placeholder for training LLaMA from scratch.
Currently, it just trains on the Shakespeare dataset.
"""
from pathlib import Path
import sys
import os
import time
from functools import partial
from typing import Tuple

import lightning as L
from lightning.fabric.strategies import FSDPStrategy

import torch
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy

import numpy as np

# support running without installing as a package
wd = Path(__file__).parent.parent.resolve()
sys.path.append(str(wd))

from lit_llama.model import Block, LLaMA, LLaMAConfig
from lit_llama.utils import save_model_checkpoint


out_dir = "out/training"
eval_interval = 2000
eval_iters = 200
log_interval = 1
# compilation fails as it does not support torch.complex64 for RoPE
# compile = False

# Hyperparameters
learning_rate = 6e-4
batch_size = 2
max_iters = 600000
weight_decay = 1e-1
beta1 = 0.9
beta2 = 0.95
grad_clip = 1.0

# For shakespeare, choose smaller block size than vanilla LLaMA
block_size = 1024


def main() -> None:
    auto_wrap_policy = partial(transformer_auto_wrap_policy, transformer_layer_cls={Block})
    strategy = FSDPStrategy(auto_wrap_policy=auto_wrap_policy, activation_checkpointing=Block, limit_all_gathers=True)

    fabric = L.Fabric(accelerator="cuda", devices=4, precision="bf16-mixed", strategy=strategy)
    fabric.launch()
    fabric.seed_everything(1337 + fabric.global_rank)

    if fabric.global_rank == 0:
        os.makedirs(out_dir, exist_ok=True)

    train_data, val_data = load_datasets()

    config = LLaMAConfig.from_name("7B")
    config.block_size = block_size
    config.vocab_size = 100  # from prepare_shakespeare.py

    with fabric.device:
        model = LLaMA(config)

    # if compile:
    #     model = torch.compile(model)

    model = fabric.setup_module(model)

    optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=weight_decay, betas=(beta1, beta2), foreach=False)
    optimizer = fabric.setup_optimizers(optimizer)

    train(fabric, model, optimizer, train_data, val_data)


def train(
    fabric: L.Fabric,
    model: torch.nn.Module,
    optimizer: torch.optim.Optimizer,
    train_data: np.ndarray,
    val_data: np.ndarray,
) -> None:
    """The training loop.

    Loosely based on the nanoGPT implementation: https://github.com/karpathy/nanoGPT.
    """

    iter_num = 0

    while True:
        # TODO: add learning rate scheduling

        # evaluate the loss on train/val sets and write checkpoints
        if iter_num > 0 and iter_num % eval_interval == 0:
            val_loss = validate(fabric, model, val_data)
            fabric.print(f"step {iter_num}: val loss {val_loss:.4f}")
            fabric.print(f"Saving checkpoint to {out_dir}")
            save_model_checkpoint(fabric, model, os.path.join(out_dir, f"iter-{iter_num:06d}-ckpt.pth"))

        t0 = time.time()

        input_ids, targets = get_batch(
            fabric,
            train_data,
            block_size=model.config.block_size,  # type: ignore[union-attr,arg-type]
        )
        logits = model(input_ids)
        loss = torch.nn.functional.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)

        fabric.backward(loss)

        # TODO: Gradient clipping
        # if grad_clip != 0.0:
        #     fabric.clip_gradients(model, optimizer, max_norm=grad_clip)

        optimizer.step()
        optimizer.zero_grad()

        dt = time.time() - t0
        if iter_num % log_interval == 0:
            fabric.print(f"iter {iter_num}: loss {loss.item():.4f}, time: {dt*1000:.2f}ms")
        iter_num += 1

        if iter_num > max_iters:
            break


@torch.no_grad()
def validate(fabric: L.Fabric, model: torch.nn.Module, val_data: np.ndarray) -> torch.Tensor:
    fabric.print("Validating ...")
    model.eval()
    losses = torch.zeros(eval_iters)
    for k in range(eval_iters):
        input_ids, targets = get_batch(
            fabric,
            val_data,
            block_size=model.config.block_size,  # type: ignore[union-attr,arg-type]
        )
        logits = model(input_ids)
        loss = torch.nn.functional.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
        losses[k] = loss.item()
    out = losses.mean()
    model.train()
    return out


def get_batch(fabric: L.Fabric, data: np.ndarray, block_size: int) -> Tuple[torch.Tensor, torch.Tensor]:
    ix = torch.randint(len(data) - block_size, (batch_size,))
    x = torch.stack([torch.from_numpy((data[i : i + block_size]).astype(np.int64)) for i in ix])
    y = torch.stack([torch.from_numpy((data[i + 1 : i + 1 + block_size]).astype(np.int64)) for i in ix])
    x, y = fabric.to_device((x.pin_memory(), y.pin_memory()))
    return x, y


def load_datasets(data_dir: str = "data/shakespeare") -> Tuple[np.ndarray, np.ndarray]:
    train_data = np.memmap(os.path.join(data_dir, "train.bin"), dtype=np.uint16, mode="r")
    val_data = np.memmap(os.path.join(data_dir, "val.bin"), dtype=np.uint16, mode="r")
    return train_data, val_data


if __name__ == "__main__":
    torch.set_float32_matmul_precision("high")
    main()