Spaces:
Runtime error
Runtime error
File size: 1,375 Bytes
ea0d3c0 4c7cb3d 4e50f6d 4c7cb3d 4e50f6d 4c7cb3d 1d97b1b 4c7cb3d f219d72 3b01ff0 4c7cb3d c3afaf7 f219d72 c3afaf7 4e50f6d 4c7cb3d 3b01ff0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
from typing import Iterator
model_id = 'xuqinyang/baichuan-13b-chat-ggml-int4'
from huggingface_hub import snapshot_download,hf_hub_download
#旧
#snapshot_download(model_id, local_dir="./",revision="7f71a8abefa7b2eede3f74ce0564abe5fbe6874a")
snapshot_download(model_id, local_dir="./",revision="b2414a0ceee68fe09c99ace44446cfc9a1c52b08")
hf_hub_download(repo_id="baichuan-inc/Baichuan-13B-Chat",local_dir="./", filename="tokenizer.model")
from llama_cpp import Llama
llm = Llama(model_path="./ggml-model-q4_0.bin", n_ctx=4096,seed=-1)
def run(message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.3,
top_p: float = 0.85,
top_k: int = 5) -> Iterator[str]:
history = []
print(chat_history)
result=""
for i in chat_history:
history.append({"role": "user", "content": i[0]})
history.append({"role": "assistant", "content": i[1]})
print(history)
history.append({"role": "user", "content": message})
for response in llm.create_chat_completion(history,stop=["</s>"],stream=True,max_tokens=-1,temperature=temperature,top_k=top_k,top_p=top_p,repeat_penalty=1.1):
if "content" in response["choices"][0]["delta"]:
result = result + response["choices"][0]["delta"]["content"]
yield result |