File size: 12,253 Bytes
94de731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
# --------------------------------------------------------
# BiomedSeg
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Yu Gu (yugu1@microsoft.com), Theo Zhao (theodorezhao@microsoft.com)
# --------------------------------------------------------

import os
import sys

this_file_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.join(this_file_dir, "../ct_seg"))
import json
import warnings
import PIL
from PIL import Image
from typing import Any, Callable, Dict, List, Optional, Tuple

import monai
import cv2
import math
import gradio as gr
import torch
import argparse
import imageio
import numpy as np
import scipy

from torchvision import transforms
from models import dinov2_vitl_transunet
from class_dict import class_dict, dataset_class
from transforms import _MEAN, _STD
from monai import transforms as monai_transforms
from scipy.ndimage import label

id2label = {v: k for k, v in class_dict.items()}
np.random.seed(0)
id2color = {k: list(np.random.choice(range(256), size=3)) for k,v in id2label.items()}


def clean_mask(X):
    """
    Cleans the mask for labels 1 and 2 by keeping only the largest connected component for each label.
    
    Parameters:
    X (numpy.ndarray): Volumetric mask of shape [N, 1, W, H] with values 0 (background), 1, or 2.
    
    Returns:
    numpy.ndarray: Cleaned volumetric mask with the same shape as X.
    """
    # Extract the volume data (assuming N is the depth dimension)
    if X.ndim == 4:
        volume = X[:, 0, :, :]  # Shape: [N, W, H]
    else:
        volume = X
    
    for label_value in [1, 2, 10]:
        # Create a binary mask for the current label
        mask = (volume == label_value)
        if not np.any(mask):
            continue  # Skip if the label is not present
        
        # Define connectivity for 3D connected components
        structure = np.ones((3, 3, 3), dtype=int)
        
        # Label connected components
        labeled_mask, num_features = label(mask, structure=structure)
        if num_features == 0:
            continue  # No connected components found
        
        # Compute sizes of all connected components
        component_sizes = np.bincount(labeled_mask.ravel())
        component_sizes[0] = 0  # Ignore the background
        
        # Find the label of the largest connected component
        largest_component_label = component_sizes.argmax()
        
        # Create a mask for the largest connected component
        largest_component_mask = (labeled_mask == largest_component_label)
        
        # Remove all other components of the current label
        volume[mask] = 0  # Set all pixels of the current label to background
        volume[largest_component_mask] = label_value  # Restore the largest component
    
    # Update the original mask
    if X.ndim == 4:
        X[:, 0, :, :] = volume
    else:
        X = volume
    return X


def parse_option():
    parser = argparse.ArgumentParser('SEEM Demo', add_help=False)
    parser.add_argument('--model_path', default="ckpt/model_19.pth", metavar="FILE", help='path to model file')
    # parser.add_argument('--model_path', default="ckpt/uw_seg_heart.pth", metavar="FILE", help='path to model file')
    cfg = parser.parse_args()
    return cfg

'''
build args
'''
cfg = parse_option()

pretrained_pth = cfg.model_path

def load_tif_images(file_path):
    vol = imageio.imread(file_path)
    if np.max(vol) <= 1:
        vol = vol * 255
    return vol

def overlay_image_with_mask(image, segmentation_map, path='test.png', ax=None):
    color_seg = np.zeros((segmentation_map.shape[0], segmentation_map.shape[1], 3), dtype=np.uint8) # height, width, 3
    for label, color in id2color.items():
        color_seg[segmentation_map == label, :] = color

    # Show image + mask
    img = np.array(image) * 0.5 + color_seg * 0.5
    img = img.astype(np.uint8)
    return img

def resize_volume(vol, size, max_frames, nearest_neighbor=False):
    W, H, F = vol.shape

    zoom_rate = size / W
    vol_reshape = scipy.ndimage.zoom(
        vol, (zoom_rate, zoom_rate, zoom_rate), order=3 if not nearest_neighbor else 0
    )
    resizeW, resizeH, resizeF = vol_reshape.shape
    if resizeF > max_frames:
        vol_reshape = vol_reshape[:, :, :max_frames]
        resizeF = max_frames
    else:
        resized_max_fr = int(math.ceil(max_frames * zoom_rate))
        vol_reshape = np.concatenate([vol_reshape, np.zeros((resizeW, resizeH, resized_max_fr - resizeF))], axis=-1)
    return vol_reshape, resizeF, zoom_rate

val_transform = monai_transforms.Compose([monai_transforms.Resized(keys=['image'], spatial_size=(256, 256), mode=['bilinear'])])
def process_volume(vol: np.ndarray, keep_frames: Callable=lambda x: x > 0.025):
    initial_resize = monai.transforms.ResizeWithPadOrCrop((512, 512))
    transform = monai.transforms.CropForeground(keys=["pixel_values"], source_key="pixel_values", return_coords=True)
    crop_vol, start_coords, end_coords = transform(vol)
    keep_frames = np.where(keep_frames(np.mean(np.mean(crop_vol, axis=-1), axis=-1)))[0]
    crop_vol = crop_vol[keep_frames]
    W, H, F = crop_vol.shape
    proc_vol = cv2.equalizeHist(crop_vol.reshape(W, -1).astype(np.uint8)).reshape(W, H, F)
    proc_vol = initial_resize(proc_vol).detach().cpu().numpy().transpose((1, 2, 0))
    proc_vol, max_fr = resize_volume(proc_vol, 256, max_frames=512)[:2]

    images = []
    for i in range(proc_vol.shape[2]):
        image = torch.from_numpy(proc_vol[:, :, i]).unsqueeze(0)
        image_transformed = val_transform({"image": image})["image"]
        images.append(image_transformed)
    images = torch.stack(images)
    if images.max() > 1:
        images = images / 255.0
    # make the images three channels
    images = images.repeat(1, 3, 1, 1)
    for c in range(len(_MEAN)):
        images[:, c, :, :] = (images[:, c, :, :] - _MEAN[c]) / _STD[c]
    return images, max_fr

def untransform(img):
    for c in range(len(_MEAN)):
        img[c] = img[c] * _STD[c] + _MEAN[c]
    if img.max() <= 1:
        img = img * 255
    return img.long()

def process_ct(ct_path: str):
    vol = load_tif_images(ct_path)
    images, frame_indices = process_volume(vol, keep_frames=lambda x: x > 0.025)
    return images, frame_indices

# Ensure the example file is in the same directory or provide a relative path
examples = [["demo/CTseg_57_raw.tif"],
            ["demo/CTrec-don_1101.tif"]]

'''
build model
'''
class_names = dataset_class["uwseg"]
class_ids = [class_dict[class_name] for class_name in class_names]
model = dinov2_vitl_transunet(pretrained="", num_classes=len(class_dict), img_size=256)
state_dict = torch.load(pretrained_pth)
model.load_state_dict(state_dict)
model = model.cuda()

@torch.no_grad()
def inference(image_input):
    if isinstance(image_input, str):
        # image_input is a file path
        file_path = image_input
    else:
        # image_input is a gr.File object
        file_path = image_input.name
    images, frame_indices = process_ct(file_path)
    with torch.no_grad():
        with torch.cuda.amp.autocast(dtype=torch.float16):
            logits = model(images.cuda())
    for j in range(len(class_dict)):
        if j + 1 not in class_ids:
            logits[:, j] = -1000
    pred = torch.argmax(logits, dim=1) + 1
    pred_mask = (torch.max(logits, dim=1)[0] > 0)
    pred = pred_mask * pred
    pred[frame_indices:] = 0
    pred = torch.from_numpy(clean_mask(pred.cpu().numpy()))
    volume_size = torch.sum(pred==2).item()
    # 1 pixel = 1 mm^2, change to cm^3
    volume_size = volume_size / 1000

    # Compute the size of the segmented mask for each slice
    sizes = pred.view(pred.shape[0], -1).sum(dim=1).cpu().numpy()

    segmentation_results = []
    raw_images = []
    for i in range(len(images)):
        images[i] = untransform(images[i])
        raw_image = Image.fromarray(images[i].cpu().permute(1, 2, 0).numpy().astype(np.uint8))
        raw_images.append(raw_image)
        image_with_mask = overlay_image_with_mask(images[i].cpu().permute(1, 2, 0).numpy(), pred[i].squeeze(0).cpu().numpy())
        image_with_mask = Image.fromarray(image_with_mask)
        segmentation_results.append(image_with_mask)
    initial_slice_index = 0
    output_seg = segmentation_results[initial_slice_index]
    output_raw = raw_images[initial_slice_index]
    num_slices = len(segmentation_results)
    initial_size = sizes[initial_slice_index]
    return output_seg, output_raw, segmentation_results, raw_images, gr.update(maximum=num_slices - 1), sizes, f"Heart volume size: {volume_size} cm^3"

def update_slice(slice_index, segmentation_results_state, raw_images_state, sizes_text):
    segmentation_results = segmentation_results_state
    raw_images = raw_images_state

    if segmentation_results is None or raw_images is None:
        return None, None, ""
    output_seg = segmentation_results[slice_index]
    output_raw = raw_images[slice_index]

    return output_seg, output_raw, size_text

def load_example(example):
    image_file_path = example
    return inference(image_file_path)

title = "CT Segmentation"
description = """

<div style="text-align: left; font-weight: bold;">
    <br>
    &#x1F32A Note: The current model is run on <span style="color:blue;">CT Segmentation (UW) </span> </p>
</div>
"""

article = "The Demo is Run on CT-Seg."
with gr.Blocks(theme=gr.themes.Soft(), title=title, css=".gradio-container { max-width: 1000px; margin: auto; }") as demo:
    # add title
    with gr.Row():
        gr.Markdown(value="# <span style='color: #6366f1;'>UW CT segmentation</span>", elem_id="title")
    with gr.Row():
        with gr.Column(scale=2):
            gr.Markdown(value="""
                Welcome to CT Segmentation, an AI model that segments the thorax and heart out, and computes the volume sizes.

                ## How to Use:
                0. **Explore Default Examples**: Click on images in the right panel. 
                1. **Upload Your Image**: something biomedical... but not your lovely pet!

                Click **Segment** and see what CT Seg finds for you!
                """, 
                elem_id="instructions")
            gr.Markdown("## Step 1: Upload CT volume .tif image (Try examples on the right panel)")
            with gr.Row(equal_height = True):
                input_image = gr.File(label="Input Image", file_types=[".tif"])
                # Initially, set the slider maximum to a default value, e.g., 0
                slice_index_slider = gr.Slider(minimum=0, maximum=0, step=1, label="Slice Index")
            with gr.Row(equal_height = True):
                output_raw = gr.Image(label="Processed Image", interactive=False)
                output_seg = gr.Image(label="Segmentation Results", interactive=False) 
            with gr.Row():
                size_text = gr.Textbox(label="Heart volume Size", interactive=False)
            with gr.Row():
                button = gr.Button("Segment", interactive=True, variant='primary')
        with gr.Column(scale=0.5):
            gr.Markdown("## Click Default Examples")
            # Initialize state variables
            segmentation_results_state = gr.State()
            raw_images_state = gr.State()
            sizes_state = gr.State()
            gr.Examples(
                examples=examples,
                inputs=[input_image],
                outputs=[output_seg, output_raw, segmentation_results_state, raw_images_state, slice_index_slider, sizes_state, size_text],
                fn=load_example,
                cache_examples=False,
                examples_per_page=1,
                run_on_click=True
            )
    # Set up the button click
    button.click(
        fn=inference,
        inputs=[input_image],
        outputs=[output_seg, output_raw, segmentation_results_state, raw_images_state, slice_index_slider, sizes_state, size_text]
    )
    # Set up the slider change
    slice_index_slider.change(
        fn=update_slice,
        inputs=[slice_index_slider, segmentation_results_state, raw_images_state, size_text],
        outputs=[output_seg, output_raw, size_text]
    )

if __name__ == "__main__":
    demo.queue().launch(share=True)