Spaces:
Running
Running
File size: 9,635 Bytes
404d2af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
# SGMNet Implementation
![Framework](assets/teaser.png)
PyTorch implementation of SGMNet for ICCV'21 paper ["Learning to Match Features with Seeded Graph Matching Network"](https://arxiv.org/abs/2108.08771), by Hongkai Chen, Zixin Luo, Jiahui Zhang, Lei Zhou, Xuyang Bai, Zeyu Hu, Chiew-Lan Tai, Long Quan.
This work focuses on keypoint-based image matching problem. We mitigate the qudratic complexity issue for typical GNN-based matching by leveraging a restrited set of pre-matched seeds.
This repo contains training, evaluation and basic demo sripts used in our paper. As baseline, it also includes **our implementation** for [SuperGlue](https://arxiv.org/abs/1911.11763). If you find this project useful, please cite:
```
@article{chen2021sgmnet,
title={Learning to Match Features with Seeded Graph Matching Network},
author={Chen, Hongkai and Luo, Zixin and Zhang, Jiahui and Zhou, Lei and Bai, Xuyang and Hu, Zeyu and Tai, Chiew-Lan and Quan, Long},
journal={International Conference on Computer Vision (ICCV)},
year={2021}
}
```
Part of the code is borrowed or ported from
[SuperPoint](https://github.com/magicleap/SuperPointPretrainedNetwork), for SuperPoint implementation,
[SuperGlue](https://github.com/magicleap/SuperGluePretrainedNetwork), for SuperGlue implementation and exact auc computation,
[OANet](https://github.com/zjhthu/OANet), for training scheme,
[PointCN](https://github.com/vcg-uvic/learned-correspondence-release), for implementaion of PointCN block and geometric transformations,
[FM-Bench](https://github.com/JiawangBian/FM-Bench), for evaluation of fundamental matrix estimation.
Please also cite these works if you find the corresponding code useful.
## Requirements
We use PyTorch 1.6, later version should also be compatible. Please refer to [requirements.txt](requirements.txt) for other dependencies.
If you are using conda, you may configure the environment as:
```bash
conda create --name sgmnet python=3.7 -y && \
pip install -r requirements.txt && \
conda activate sgmnet
```
## Get started
Clone the repo:
```bash
git clone https://github.com/vdvchen/SGMNet.git && \
```
download model weights from [here](https://drive.google.com/file/d/1Ca0WmKSSt2G6P7m8YAOlSAHEFar_TAWb/view?usp=sharing)
extract weights by
```bash
tar -xvf weights.tar.gz
```
A quick demo for image matching can be called by:
```bash
cd demo && python demo.py --config_path configs/sgm_config.yaml
```
The resutls will be saved as **match.png** in demo folder. You may configure the matcher in corresponding yaml file.
## Evaluation
We demonstrate evaluation process with RootSIFT and SGMNet. Evaluation with other features/matchers can be conducted by configuring the corresponding yaml files.
### 1. YFCC Evaluation
Refer to [OANet](https://github.com/zjhthu/OANet) repo to download raw YFCC100M dataset
**Data Generation**
1. Configure **datadump/configs/yfcc_root.yaml** for the following entries
**rawdata_dir**: path for yfcc rawdata
**feature_dump_dir**: dump path for extracted features
**dataset_dump_dir**: dump path for generated dataset
**extractor**: configuration for keypoint extractor (2k RootSIFT by default)
2. Generate data by
```bash
cd datadump
python dump.py --config_path configs/yfcc_root.yaml
```
An h5py data file will be generated under **dataset_dump_dir**, e.g. **yfcc_root_2000.hdf5**
**Evaluation**:
1. Configure **evaluation/configs/eval/yfcc_eval_sgm.yaml** for the following entries
**reader.rawdata_dir**: path for yfcc_rawdata
**reader.dataset_dir**: path for generated h5py dataset file
**matcher**: configuration for sgmnet (we use the default setting)
2. To run evaluation,
```bash
cd evaluation
python evaluate.py --config_path configs/eval/yfcc_eval_sgm.yaml
```
For 2k RootSIFT matching, similar results as below should be obtained,
```bash
auc th: [5 10 15 20 25 30]
approx auc: [0.634 0.729 0.783 0.818 0.843 0.861]
exact auc: [0.355 0.552 0.655 0.719 0.762 0.793]
mean match score: 17.06
mean precision: 86.08
```
### 2. ScanNet Evaluation
Download processed [ScanNet evaluation data](https://drive.google.com/file/d/14s-Ce8Vq7XedzKon8MZSB_Mz_iC6oFPy/view?usp=sharing).
**Data Generation**
1. Configure **datadump/configs/scannet_root.yaml** for the following entries
**rawdata_dir**: path for ScanNet raw data
**feature_dump_dir**: dump path for extracted features
**dataset_dump_dir**: dump path for generated dataset
**extractor**: configuration for keypoint extractor (2k RootSIFT by default)
2. Generate data by
```bash
cd datadump
python dump.py --config_path configs/scannet_root.yaml
```
An h5py data file will be generated under **dataset_dump_dir**, e.g. **scannet_root_2000.hdf5**
**Evaluation**:
1. Configure **evaluation/configs/eval/scannet_eval_sgm.yaml** for the following entries
**reader.rawdata_dir**: path for ScanNet evaluation data
**reader.dataset_dir**: path for generated h5py dataset file
**matcher**: configuration for sgmnet (we use the default setting)
2. To run evaluation,
```bash
cd evaluation
python evaluate.py --config_path configs/eval/scannet_eval_sgm.yaml
```
For 2k RootSIFT matching, similar results as below should be obtained,
```bash
auc th: [5 10 15 20 25 30]
approx auc: [0.322 0.427 0.493 0.541 0.577 0.606]
exact auc: [0.125 0.283 0.383 0.452 0.503 0.541]
mean match score: 8.79
mean precision: 45.54
```
### 3. FM-Bench Evaluation
Refer to [FM-Bench](https://github.com/JiawangBian/FM-Bench) repo to download raw FM-Bench dataset
**Data Generation**
1. Configure **datadump/configs/fmbench_root.yaml** for the following entries
**rawdata_dir**: path for fmbench raw data
**feature_dump_dir**: dump path for extracted features
**dataset_dump_dir**: dump path for generated dataset
**extractor**: configuration for keypoint extractor (4k RootSIFT by default)
2. Generate data by
```bash
cd datadump
python dump.py --config_path configs/fmbench_root.yaml
```
An h5py data file will be generated under **dataset_dump_dir**, e.g. **fmbench_root_4000.hdf5**
**Evaluation**:
1. Configure **evaluation/configs/eval/fm_eval_sgm.yaml** for the following entries
**reader.rawdata_dir**: path for fmbench raw data
**reader.dataset_dir**: path for generated h5py dataset file
**matcher**: configuration for sgmnet (we use the default setting)
2. To run evaluation,
```bash
cd evaluation
python evaluate.py --config_path configs/eval/fm_eval_sgm.yaml
```
For 4k RootSIFT matching, similar results as below should be obtained,
```bash
CPC results:
F_recall: 0.617
precision: 0.7489
precision_post: 0.8399
num_corr: 663.838
num_corr_post: 284.455
KITTI results:
F_recall: 0.911
precision: 0.9035133886251774
precision_post: 0.9837278538989989
num_corr: 1670.548
num_corr_post: 1121.902
TUM results:
F_recall: 0.666
precision: 0.6520260208250837
precision_post: 0.731507123852191
num_corr: 1650.579
num_corr_post: 941.846
Tanks_and_Temples results:
F_recall: 0.855
precision: 0.7452896681043316
precision_post: 0.8020184635328004
num_corr: 946.571
num_corr_post: 466.865
```
### 4. Run time and memory Evaluation
We provide a script to test run time and memory consumption, for a quick start, run
```bash
cd evaluation
python eval_cost.py --matcher_name SGM --config_path configs/cost/sgm_cost.yaml --num_kpt=4000
```
You may configure the matcher in corresponding yaml files.
## Visualization
For visualization of matching results on different dataset, add **--vis_folder** argument on evaluation command, e.g.
```bash
cd evaluation
python evaluate.py --config_path configs/eval/***.yaml --vis_folder visualization
```
## Training
We train both SGMNet and SuperGlue on [GL3D](https://github.com/lzx551402/GL3D) dataset. The training data is pre-generated in an offline manner, which yields about 400k pairs in total.
To generate training/validation dataset
1. Download [GL3D](https://github.com/lzx551402/GL3D) rawdata
2. Configure **datadump/configs/gl3d.yaml**. Some important entries are
**rawdata_dir**: path for GL3D raw data
**feature_dump_dir**: path for extracted features
**dataset_dump_dir**: path for generated dataset
**pairs_per_seq**: number of pairs sampled for each sequence
**angle_th**: angle threshold for sampled pairs
**overlap_th**: common track threshold for sampled pairs
**extractor**: configuration for keypoint extractor
3. dump dataset by
```bash
cd datadump
python dump.py --config_path configs/gl3d.yaml
```
Two parts of data will be generated. (1) Extracted features and keypoints will be placed under **feature_dump_dir** (2) Pairwise dataset will be placed under **dataset_dump_dir**.
4. After data generation, configure **train/train_sgm.sh** for necessary entries, including
**rawdata_path**: path for GL3D raw data
**desc_path**: path for extracted features
**dataset_path**: path for generated dataset
**desc_suffix**: suffix for keypoint files, _root_1000.hdf5 for 1k RootSIFT by default.
**log_base**: log directory for training
5. run SGMNet training scripts by
```bash
bash train_sgm.sh
```
our training scripts support multi-gpu training, which can be enabled by configure **train/train_sgm.sh** for these entries
**CUDA_VISIBLE_DEVICES**: id of gpus to be used
**nproc_per_node**: number of gpus to be used
run SuperGlue training scripts by
```bash
bash train_sg.sh
```
|