Spaces:
Running
Running
File size: 13,267 Bytes
9223079 60ad158 9223079 60ad158 9223079 60ad158 9223079 60ad158 9223079 60ad158 9223079 60ad158 9223079 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
# Copyright (c) 2018, ETH Zurich and UNC Chapel Hill.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# * Neither the name of ETH Zurich and UNC Chapel Hill nor the names of
# its contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
# Author: Johannes L. Schoenberger (jsch-at-demuc-dot-de)
# This script is based on an original implementation by True Price.
import sys
import sqlite3
import numpy as np
IS_PYTHON3 = sys.version_info[0] >= 3
MAX_IMAGE_ID = 2**31 - 1
CREATE_CAMERAS_TABLE = """CREATE TABLE IF NOT EXISTS cameras (
camera_id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
model INTEGER NOT NULL,
width INTEGER NOT NULL,
height INTEGER NOT NULL,
params BLOB,
prior_focal_length INTEGER NOT NULL)"""
CREATE_DESCRIPTORS_TABLE = """CREATE TABLE IF NOT EXISTS descriptors (
image_id INTEGER PRIMARY KEY NOT NULL,
rows INTEGER NOT NULL,
cols INTEGER NOT NULL,
data BLOB,
FOREIGN KEY(image_id) REFERENCES images(image_id) ON DELETE CASCADE)"""
CREATE_IMAGES_TABLE = """CREATE TABLE IF NOT EXISTS images (
image_id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
name TEXT NOT NULL UNIQUE,
camera_id INTEGER NOT NULL,
prior_qw REAL,
prior_qx REAL,
prior_qy REAL,
prior_qz REAL,
prior_tx REAL,
prior_ty REAL,
prior_tz REAL,
CONSTRAINT image_id_check CHECK(image_id >= 0 and image_id < {}),
FOREIGN KEY(camera_id) REFERENCES cameras(camera_id))
""".format(
MAX_IMAGE_ID
)
CREATE_TWO_VIEW_GEOMETRIES_TABLE = """
CREATE TABLE IF NOT EXISTS two_view_geometries (
pair_id INTEGER PRIMARY KEY NOT NULL,
rows INTEGER NOT NULL,
cols INTEGER NOT NULL,
data BLOB,
config INTEGER NOT NULL,
F BLOB,
E BLOB,
H BLOB,
qvec BLOB,
tvec BLOB)
"""
CREATE_KEYPOINTS_TABLE = """CREATE TABLE IF NOT EXISTS keypoints (
image_id INTEGER PRIMARY KEY NOT NULL,
rows INTEGER NOT NULL,
cols INTEGER NOT NULL,
data BLOB,
FOREIGN KEY(image_id) REFERENCES images(image_id) ON DELETE CASCADE)
"""
CREATE_MATCHES_TABLE = """CREATE TABLE IF NOT EXISTS matches (
pair_id INTEGER PRIMARY KEY NOT NULL,
rows INTEGER NOT NULL,
cols INTEGER NOT NULL,
data BLOB)"""
CREATE_NAME_INDEX = (
"CREATE UNIQUE INDEX IF NOT EXISTS index_name ON images(name)"
)
CREATE_ALL = "; ".join(
[
CREATE_CAMERAS_TABLE,
CREATE_IMAGES_TABLE,
CREATE_KEYPOINTS_TABLE,
CREATE_DESCRIPTORS_TABLE,
CREATE_MATCHES_TABLE,
CREATE_TWO_VIEW_GEOMETRIES_TABLE,
CREATE_NAME_INDEX,
]
)
def image_ids_to_pair_id(image_id1, image_id2):
if image_id1 > image_id2:
image_id1, image_id2 = image_id2, image_id1
return image_id1 * MAX_IMAGE_ID + image_id2
def pair_id_to_image_ids(pair_id):
image_id2 = pair_id % MAX_IMAGE_ID
image_id1 = (pair_id - image_id2) / MAX_IMAGE_ID
return image_id1, image_id2
def array_to_blob(array):
if IS_PYTHON3:
return array.tobytes()
else:
return np.getbuffer(array)
def blob_to_array(blob, dtype, shape=(-1,)):
if IS_PYTHON3:
return np.fromstring(blob, dtype=dtype).reshape(*shape)
else:
return np.frombuffer(blob, dtype=dtype).reshape(*shape)
class COLMAPDatabase(sqlite3.Connection):
@staticmethod
def connect(database_path):
return sqlite3.connect(str(database_path), factory=COLMAPDatabase)
def __init__(self, *args, **kwargs):
super(COLMAPDatabase, self).__init__(*args, **kwargs)
self.create_tables = lambda: self.executescript(CREATE_ALL)
self.create_cameras_table = lambda: self.executescript(
CREATE_CAMERAS_TABLE
)
self.create_descriptors_table = lambda: self.executescript(
CREATE_DESCRIPTORS_TABLE
)
self.create_images_table = lambda: self.executescript(
CREATE_IMAGES_TABLE
)
self.create_two_view_geometries_table = lambda: self.executescript(
CREATE_TWO_VIEW_GEOMETRIES_TABLE
)
self.create_keypoints_table = lambda: self.executescript(
CREATE_KEYPOINTS_TABLE
)
self.create_matches_table = lambda: self.executescript(
CREATE_MATCHES_TABLE
)
self.create_name_index = lambda: self.executescript(CREATE_NAME_INDEX)
def add_camera(
self,
model,
width,
height,
params,
prior_focal_length=False,
camera_id=None,
):
params = np.asarray(params, np.float64)
cursor = self.execute(
"INSERT INTO cameras VALUES (?, ?, ?, ?, ?, ?)",
(
camera_id,
model,
width,
height,
array_to_blob(params),
prior_focal_length,
),
)
return cursor.lastrowid
def add_image(
self,
name,
camera_id,
prior_q=np.full(4, np.NaN),
prior_t=np.full(3, np.NaN),
image_id=None,
):
cursor = self.execute(
"INSERT INTO images VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)",
(
image_id,
name,
camera_id,
prior_q[0],
prior_q[1],
prior_q[2],
prior_q[3],
prior_t[0],
prior_t[1],
prior_t[2],
),
)
return cursor.lastrowid
def add_keypoints(self, image_id, keypoints):
assert len(keypoints.shape) == 2
assert keypoints.shape[1] in [2, 4, 6]
keypoints = np.asarray(keypoints, np.float32)
self.execute(
"INSERT INTO keypoints VALUES (?, ?, ?, ?)",
(image_id,) + keypoints.shape + (array_to_blob(keypoints),),
)
def add_descriptors(self, image_id, descriptors):
descriptors = np.ascontiguousarray(descriptors, np.uint8)
self.execute(
"INSERT INTO descriptors VALUES (?, ?, ?, ?)",
(image_id,) + descriptors.shape + (array_to_blob(descriptors),),
)
def add_matches(self, image_id1, image_id2, matches):
assert len(matches.shape) == 2
assert matches.shape[1] == 2
if image_id1 > image_id2:
matches = matches[:, ::-1]
pair_id = image_ids_to_pair_id(image_id1, image_id2)
matches = np.asarray(matches, np.uint32)
self.execute(
"INSERT INTO matches VALUES (?, ?, ?, ?)",
(pair_id,) + matches.shape + (array_to_blob(matches),),
)
def add_two_view_geometry(
self,
image_id1,
image_id2,
matches,
F=np.eye(3),
E=np.eye(3),
H=np.eye(3),
qvec=np.array([1.0, 0.0, 0.0, 0.0]),
tvec=np.zeros(3),
config=2,
):
assert len(matches.shape) == 2
assert matches.shape[1] == 2
if image_id1 > image_id2:
matches = matches[:, ::-1]
pair_id = image_ids_to_pair_id(image_id1, image_id2)
matches = np.asarray(matches, np.uint32)
F = np.asarray(F, dtype=np.float64)
E = np.asarray(E, dtype=np.float64)
H = np.asarray(H, dtype=np.float64)
qvec = np.asarray(qvec, dtype=np.float64)
tvec = np.asarray(tvec, dtype=np.float64)
self.execute(
"INSERT INTO two_view_geometries VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)",
(pair_id,)
+ matches.shape
+ (
array_to_blob(matches),
config,
array_to_blob(F),
array_to_blob(E),
array_to_blob(H),
array_to_blob(qvec),
array_to_blob(tvec),
),
)
def example_usage():
import os
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--database_path", default="database.db")
args = parser.parse_args()
if os.path.exists(args.database_path):
print("ERROR: database path already exists -- will not modify it.")
return
# Open the database.
db = COLMAPDatabase.connect(args.database_path)
# For convenience, try creating all the tables upfront.
db.create_tables()
# Create dummy cameras.
model1, width1, height1, params1 = (
0,
1024,
768,
np.array((1024.0, 512.0, 384.0)),
)
model2, width2, height2, params2 = (
2,
1024,
768,
np.array((1024.0, 512.0, 384.0, 0.1)),
)
camera_id1 = db.add_camera(model1, width1, height1, params1)
camera_id2 = db.add_camera(model2, width2, height2, params2)
# Create dummy images.
image_id1 = db.add_image("image1.png", camera_id1)
image_id2 = db.add_image("image2.png", camera_id1)
image_id3 = db.add_image("image3.png", camera_id2)
image_id4 = db.add_image("image4.png", camera_id2)
# Create dummy keypoints.
#
# Note that COLMAP supports:
# - 2D keypoints: (x, y)
# - 4D keypoints: (x, y, theta, scale)
# - 6D affine keypoints: (x, y, a_11, a_12, a_21, a_22)
num_keypoints = 1000
keypoints1 = np.random.rand(num_keypoints, 2) * (width1, height1)
keypoints2 = np.random.rand(num_keypoints, 2) * (width1, height1)
keypoints3 = np.random.rand(num_keypoints, 2) * (width2, height2)
keypoints4 = np.random.rand(num_keypoints, 2) * (width2, height2)
db.add_keypoints(image_id1, keypoints1)
db.add_keypoints(image_id2, keypoints2)
db.add_keypoints(image_id3, keypoints3)
db.add_keypoints(image_id4, keypoints4)
# Create dummy matches.
M = 50
matches12 = np.random.randint(num_keypoints, size=(M, 2))
matches23 = np.random.randint(num_keypoints, size=(M, 2))
matches34 = np.random.randint(num_keypoints, size=(M, 2))
db.add_matches(image_id1, image_id2, matches12)
db.add_matches(image_id2, image_id3, matches23)
db.add_matches(image_id3, image_id4, matches34)
# Commit the data to the file.
db.commit()
# Read and check cameras.
rows = db.execute("SELECT * FROM cameras")
camera_id, model, width, height, params, prior = next(rows)
params = blob_to_array(params, np.float64)
assert camera_id == camera_id1
assert model == model1 and width == width1 and height == height1
assert np.allclose(params, params1)
camera_id, model, width, height, params, prior = next(rows)
params = blob_to_array(params, np.float64)
assert camera_id == camera_id2
assert model == model2 and width == width2 and height == height2
assert np.allclose(params, params2)
# Read and check keypoints.
keypoints = dict(
(image_id, blob_to_array(data, np.float32, (-1, 2)))
for image_id, data in db.execute("SELECT image_id, data FROM keypoints")
)
assert np.allclose(keypoints[image_id1], keypoints1)
assert np.allclose(keypoints[image_id2], keypoints2)
assert np.allclose(keypoints[image_id3], keypoints3)
assert np.allclose(keypoints[image_id4], keypoints4)
# Read and check matches.
pair_ids = [
image_ids_to_pair_id(*pair)
for pair in (
(image_id1, image_id2),
(image_id2, image_id3),
(image_id3, image_id4),
)
]
matches = dict(
(pair_id_to_image_ids(pair_id), blob_to_array(data, np.uint32, (-1, 2)))
for pair_id, data in db.execute("SELECT pair_id, data FROM matches")
)
assert np.all(matches[(image_id1, image_id2)] == matches12)
assert np.all(matches[(image_id2, image_id3)] == matches23)
assert np.all(matches[(image_id3, image_id4)] == matches34)
# Clean up.
db.close()
if os.path.exists(args.database_path):
os.remove(args.database_path)
if __name__ == "__main__":
example_usage()
|