Spaces:
Running
Running
File size: 3,104 Bytes
404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
import numpy as np
import torch
### Point-related utils
# Warp a list of points using a homography
def warp_points(points, homography):
# Convert to homogeneous and in xy format
new_points = np.concatenate(
[points[..., [1, 0]], np.ones_like(points[..., :1])], axis=-1
)
# Warp
new_points = (homography @ new_points.T).T
# Convert back to inhomogeneous and hw format
new_points = new_points[..., [1, 0]] / new_points[..., 2:]
return new_points
# Mask out the points that are outside of img_size
def mask_points(points, img_size):
mask = (
(points[..., 0] >= 0)
& (points[..., 0] < img_size[0])
& (points[..., 1] >= 0)
& (points[..., 1] < img_size[1])
)
return mask
# Convert a tensor [N, 2] or batched tensor [B, N, 2] of N keypoints into
# a grid in [-1, 1]² that can be used in torch.nn.functional.interpolate
def keypoints_to_grid(keypoints, img_size):
n_points = keypoints.size()[-2]
device = keypoints.device
grid_points = (
keypoints.float()
* 2.0
/ torch.tensor(img_size, dtype=torch.float, device=device)
- 1.0
)
grid_points = grid_points[..., [1, 0]].view(-1, n_points, 1, 2)
return grid_points
# Return a 2D matrix indicating the local neighborhood of each point
# for a given threshold and two lists of corresponding keypoints
def get_dist_mask(kp0, kp1, valid_mask, dist_thresh):
b_size, n_points, _ = kp0.size()
dist_mask0 = torch.norm(kp0.unsqueeze(2) - kp0.unsqueeze(1), dim=-1)
dist_mask1 = torch.norm(kp1.unsqueeze(2) - kp1.unsqueeze(1), dim=-1)
dist_mask = torch.min(dist_mask0, dist_mask1)
dist_mask = dist_mask <= dist_thresh
dist_mask = dist_mask.repeat(1, 1, b_size).reshape(
b_size * n_points, b_size * n_points
)
dist_mask = dist_mask[valid_mask, :][:, valid_mask]
return dist_mask
### Line-related utils
# Sample n points along lines of shape (num_lines, 2, 2)
def sample_line_points(lines, n):
line_points_x = np.linspace(lines[:, 0, 0], lines[:, 1, 0], n, axis=-1)
line_points_y = np.linspace(lines[:, 0, 1], lines[:, 1, 1], n, axis=-1)
line_points = np.stack([line_points_x, line_points_y], axis=2)
return line_points
# Return a mask of the valid lines that are within a valid mask of an image
def mask_lines(lines, valid_mask):
h, w = valid_mask.shape
int_lines = np.clip(np.round(lines).astype(int), 0, [h - 1, w - 1])
h_valid = valid_mask[int_lines[:, 0, 0], int_lines[:, 0, 1]]
w_valid = valid_mask[int_lines[:, 1, 0], int_lines[:, 1, 1]]
valid = h_valid & w_valid
return valid
# Return a 2D matrix indicating for each pair of points
# if they are on the same line or not
def get_common_line_mask(line_indices, valid_mask):
b_size, n_points = line_indices.shape
common_mask = line_indices[:, :, None] == line_indices[:, None, :]
common_mask = common_mask.repeat(1, 1, b_size).reshape(
b_size * n_points, b_size * n_points
)
common_mask = common_mask[valid_mask, :][:, valid_mask]
return common_mask
|