File size: 6,216 Bytes
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36e025a
 
 
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36e025a
 
9223079
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import torch
import numpy as np
import cv2
from hloc import matchers, extractors
from hloc.utils.base_model import dynamic_load
from hloc import match_dense, match_features, extract_features
from .plotting import draw_matches, fig2im
from .visualize_util import plot_images, plot_color_line_matches

device = "cuda" if torch.cuda.is_available() else "cpu"


def get_model(match_conf):
    Model = dynamic_load(matchers, match_conf["model"]["name"])
    model = Model(match_conf["model"]).eval().to(device)
    return model


def get_feature_model(conf):
    Model = dynamic_load(extractors, conf["model"]["name"])
    model = Model(conf["model"]).eval().to(device)
    return model


def display_matches(pred: dict):
    img0 = pred["image0_orig"]
    img1 = pred["image1_orig"]

    num_inliers = 0
    if "keypoints0_orig" in pred.keys() and "keypoints1_orig" in pred.keys():
        mkpts0 = pred["keypoints0_orig"]
        mkpts1 = pred["keypoints1_orig"]
        num_inliers = len(mkpts0)
        if "mconf" in pred.keys():
            mconf = pred["mconf"]
        else:
            mconf = np.ones(len(mkpts0))
        fig_mkpts = draw_matches(
            mkpts0,
            mkpts1,
            img0,
            img1,
            mconf,
            dpi=300,
            titles=["Image 0 - matched keypoints", "Image 1 - matched keypoints"],
        )
        fig = fig_mkpts
    if "line0_orig" in pred.keys() and "line1_orig" in pred.keys():
        # lines
        mtlines0 = pred["line0_orig"]
        mtlines1 = pred["line1_orig"]
        num_inliers = len(mtlines0)
        fig_lines = plot_images(
            [img0.squeeze(), img1.squeeze()],
            ["Image 0 - matched lines", "Image 1 - matched lines"],
            dpi=300,
        )
        fig_lines = plot_color_line_matches([mtlines0, mtlines1], lw=2)
        fig_lines = fig2im(fig_lines)

        # keypoints
        mkpts0 = pred["line_keypoints0_orig"]
        mkpts1 = pred["line_keypoints1_orig"]

        if mkpts0 is not None and mkpts1 is not None:
            num_inliers = len(mkpts0)
            if "mconf" in pred.keys():
                mconf = pred["mconf"]
            else:
                mconf = np.ones(len(mkpts0))
            fig_mkpts = draw_matches(mkpts0, mkpts1, img0, img1, mconf, dpi=300)
            fig_lines = cv2.resize(fig_lines, (fig_mkpts.shape[1], fig_mkpts.shape[0]))
            fig = np.concatenate([fig_mkpts, fig_lines], axis=0)
        else:
            fig = fig_lines
    return fig, num_inliers


# Matchers collections
matcher_zoo = {
    "gluestick": {"config": match_dense.confs["gluestick"], "dense": True},
    "sold2": {"config": match_dense.confs["sold2"], "dense": True},
    # 'dedode-sparse': {
    #     'config': match_dense.confs['dedode_sparse'],
    #     'dense': True  # dense mode, we need 2 images
    # },
    "loftr": {"config": match_dense.confs["loftr"], "dense": True},
    "topicfm": {"config": match_dense.confs["topicfm"], "dense": True},
    "aspanformer": {"config": match_dense.confs["aspanformer"], "dense": True},
    "dedode": {
        "config": match_features.confs["Dual-Softmax"],
        "config_feature": extract_features.confs["dedode"],
        "dense": False,
    },
    "superpoint+superglue": {
        "config": match_features.confs["superglue"],
        "config_feature": extract_features.confs["superpoint_max"],
        "dense": False,
    },
    "superpoint+lightglue": {
        "config": match_features.confs["superpoint-lightglue"],
        "config_feature": extract_features.confs["superpoint_max"],
        "dense": False,
    },
    "disk": {
        "config": match_features.confs["NN-mutual"],
        "config_feature": extract_features.confs["disk"],
        "dense": False,
    },
    "disk+dualsoftmax": {
        "config": match_features.confs["Dual-Softmax"],
        "config_feature": extract_features.confs["disk"],
        "dense": False,
    },
    "superpoint+dualsoftmax": {
        "config": match_features.confs["Dual-Softmax"],
        "config_feature": extract_features.confs["superpoint_max"],
        "dense": False,
    },
    "disk+lightglue": {
        "config": match_features.confs["disk-lightglue"],
        "config_feature": extract_features.confs["disk"],
        "dense": False,
    },
    "superpoint+mnn": {
        "config": match_features.confs["NN-mutual"],
        "config_feature": extract_features.confs["superpoint_max"],
        "dense": False,
    },
    "sift+sgmnet": {
        "config": match_features.confs["sgmnet"],
        "config_feature": extract_features.confs["sift"],
        "dense": False,
    },
    "sosnet": {
        "config": match_features.confs["NN-mutual"],
        "config_feature": extract_features.confs["sosnet"],
        "dense": False,
    },
    "hardnet": {
        "config": match_features.confs["NN-mutual"],
        "config_feature": extract_features.confs["hardnet"],
        "dense": False,
    },
    "d2net": {
        "config": match_features.confs["NN-mutual"],
        "config_feature": extract_features.confs["d2net-ss"],
        "dense": False,
    },
    # "d2net-ms": {
    #     "config": match_features.confs["NN-mutual"],
    #     "config_feature": extract_features.confs["d2net-ms"],
    #     "dense": False,
    # },
    "alike": {
        "config": match_features.confs["NN-mutual"],
        "config_feature": extract_features.confs["alike"],
        "dense": False,
    },
    "lanet": {
        "config": match_features.confs["NN-mutual"],
        "config_feature": extract_features.confs["lanet"],
        "dense": False,
    },
    "r2d2": {
        "config": match_features.confs["NN-mutual"],
        "config_feature": extract_features.confs["r2d2"],
        "dense": False,
    },
    "darkfeat": {
        "config": match_features.confs["NN-mutual"],
        "config_feature": extract_features.confs["darkfeat"],
        "dense": False,
    },
    "sift": {
        "config": match_features.confs["NN-mutual"],
        "config_feature": extract_features.confs["sift"],
        "dense": False,
    },
    # "roma": {"config": match_dense.confs["roma"], "dense": True},
    # "DKMv3": {"config": match_dense.confs["dkm"], "dense": True},
}