Spaces:
Running
Running
File size: 1,846 Bytes
404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af 8b973ee 404d2af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import torch
import torch.nn as nn
import torchvision.transforms as tvf
from .modules import InterestPointModule, CorrespondenceModule
def warp_homography_batch(sources, homographies):
"""
Batch warp keypoints given homographies. From https://github.com/TRI-ML/KP2D.
Parameters
----------
sources: torch.Tensor (B,H,W,C)
Keypoints vector.
homographies: torch.Tensor (B,3,3)
Homographies.
Returns
-------
warped_sources: torch.Tensor (B,H,W,C)
Warped keypoints vector.
"""
B, H, W, _ = sources.shape
warped_sources = []
for b in range(B):
source = sources[b].clone()
source = source.view(-1, 2)
"""
[X, [M11, M12, M13 [x, M11*x + M12*y + M13 [M11, M12 [M13,
Y, = M21, M22, M23 * y, = M21*x + M22*y + M23 = [x, y] * M21, M22 + M23,
Z] M31, M32, M33] 1] M31*x + M32*y + M33 M31, M32].T M33]
"""
source = torch.addmm(homographies[b, :, 2], source, homographies[b, :, :2].t())
source.mul_(1 / source[:, 2].unsqueeze(1))
source = source[:, :2].contiguous().view(H, W, 2)
warped_sources.append(source)
return torch.stack(warped_sources, dim=0)
class PointModel(nn.Module):
def __init__(self, is_test=False):
super(PointModel, self).__init__()
self.is_test = is_test
self.interestpoint_module = InterestPointModule(is_test=self.is_test)
self.correspondence_module = CorrespondenceModule()
self.norm_rgb = tvf.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
def forward(self, *args):
img = args[0]
img = self.norm_rgb(img)
score, coord, desc = self.interestpoint_module(img)
return score, coord, desc
|