File size: 6,132 Bytes
404d2af
 
 
 
 
 
 
 
8b973ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
404d2af
 
 
 
8b973ee
 
404d2af
 
8b973ee
404d2af
8b973ee
 
 
 
 
404d2af
8b973ee
404d2af
8b973ee
 
 
404d2af
 
 
 
 
 
 
 
 
 
8b973ee
404d2af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b973ee
404d2af
 
 
 
 
 
 
 
8b973ee
404d2af
 
8b973ee
 
 
404d2af
8b973ee
404d2af
 
8b973ee
404d2af
8b973ee
404d2af
 
 
 
 
 
 
 
 
 
8b973ee
404d2af
 
 
 
 
 
8b973ee
 
 
 
 
404d2af
 
 
8b973ee
 
 
 
 
 
 
 
404d2af
 
8b973ee
 
 
404d2af
 
8b973ee
404d2af
 
 
 
 
 
 
 
 
 
 
8b973ee
404d2af
 
8b973ee
404d2af
 
 
 
 
 
 
 
 
 
 
 
8b973ee
404d2af
 
8b973ee
404d2af
 
8b973ee
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import cv2
import os
from tqdm import tqdm
import torch
import numpy as np
from extract import extract_method

use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")

methods = [
    "d2",
    "lfnet",
    "superpoint",
    "r2d2",
    "aslfeat",
    "disk",
    "alike-n",
    "alike-l",
    "alike-n-ms",
    "alike-l-ms",
]
names = [
    "D2-Net(MS)",
    "LF-Net(MS)",
    "SuperPoint",
    "R2D2(MS)",
    "ASLFeat(MS)",
    "DISK",
    "ALike-N",
    "ALike-L",
    "ALike-N(MS)",
    "ALike-L(MS)",
]

top_k = None
n_i = 52
n_v = 56
cache_dir = "hseq/cache"
dataset_path = "hseq/hpatches-sequences-release"


def generate_read_function(method, extension="ppm"):
    def read_function(seq_name, im_idx):
        aux = np.load(
            os.path.join(
                dataset_path, seq_name, "%d.%s.%s" % (im_idx, extension, method)
            )
        )
        if top_k is None:
            return aux["keypoints"], aux["descriptors"]
        else:
            assert "scores" in aux
            ids = np.argsort(aux["scores"])[-top_k:]
            return aux["keypoints"][ids, :], aux["descriptors"][ids, :]

    return read_function


def mnn_matcher(descriptors_a, descriptors_b):
    device = descriptors_a.device
    sim = descriptors_a @ descriptors_b.t()
    nn12 = torch.max(sim, dim=1)[1]
    nn21 = torch.max(sim, dim=0)[1]
    ids1 = torch.arange(0, sim.shape[0], device=device)
    mask = ids1 == nn21[nn12]
    matches = torch.stack([ids1[mask], nn12[mask]])
    return matches.t().data.cpu().numpy()


def homo_trans(coord, H):
    kpt_num = coord.shape[0]
    homo_coord = np.concatenate((coord, np.ones((kpt_num, 1))), axis=-1)
    proj_coord = np.matmul(H, homo_coord.T).T
    proj_coord = proj_coord / proj_coord[:, 2][..., None]
    proj_coord = proj_coord[:, 0:2]
    return proj_coord


def benchmark_features(read_feats):
    lim = [1, 5]
    rng = np.arange(lim[0], lim[1] + 1)

    seq_names = sorted(os.listdir(dataset_path))

    n_feats = []
    n_matches = []
    seq_type = []
    i_err = {thr: 0 for thr in rng}
    v_err = {thr: 0 for thr in rng}

    i_err_homo = {thr: 0 for thr in rng}
    v_err_homo = {thr: 0 for thr in rng}

    for seq_idx, seq_name in tqdm(enumerate(seq_names), total=len(seq_names)):
        keypoints_a, descriptors_a = read_feats(seq_name, 1)
        n_feats.append(keypoints_a.shape[0])

        # =========== compute homography
        ref_img = cv2.imread(os.path.join(dataset_path, seq_name, "1.ppm"))
        ref_img_shape = ref_img.shape

        for im_idx in range(2, 7):
            keypoints_b, descriptors_b = read_feats(seq_name, im_idx)
            n_feats.append(keypoints_b.shape[0])

            matches = mnn_matcher(
                torch.from_numpy(descriptors_a).to(device=device),
                torch.from_numpy(descriptors_b).to(device=device),
            )

            homography = np.loadtxt(
                os.path.join(dataset_path, seq_name, "H_1_" + str(im_idx))
            )

            pos_a = keypoints_a[matches[:, 0], :2]
            pos_a_h = np.concatenate([pos_a, np.ones([matches.shape[0], 1])], axis=1)
            pos_b_proj_h = np.transpose(np.dot(homography, np.transpose(pos_a_h)))
            pos_b_proj = pos_b_proj_h[:, :2] / pos_b_proj_h[:, 2:]

            pos_b = keypoints_b[matches[:, 1], :2]

            dist = np.sqrt(np.sum((pos_b - pos_b_proj) ** 2, axis=1))

            n_matches.append(matches.shape[0])
            seq_type.append(seq_name[0])

            if dist.shape[0] == 0:
                dist = np.array([float("inf")])

            for thr in rng:
                if seq_name[0] == "i":
                    i_err[thr] += np.mean(dist <= thr)
                else:
                    v_err[thr] += np.mean(dist <= thr)

            # =========== compute homography
            gt_homo = homography
            pred_homo, _ = cv2.findHomography(
                keypoints_a[matches[:, 0], :2],
                keypoints_b[matches[:, 1], :2],
                cv2.RANSAC,
            )
            if pred_homo is None:
                homo_dist = np.array([float("inf")])
            else:
                corners = np.array(
                    [
                        [0, 0],
                        [ref_img_shape[1] - 1, 0],
                        [0, ref_img_shape[0] - 1],
                        [ref_img_shape[1] - 1, ref_img_shape[0] - 1],
                    ]
                )
                real_warped_corners = homo_trans(corners, gt_homo)
                warped_corners = homo_trans(corners, pred_homo)
                homo_dist = np.mean(
                    np.linalg.norm(real_warped_corners - warped_corners, axis=1)
                )

            for thr in rng:
                if seq_name[0] == "i":
                    i_err_homo[thr] += np.mean(homo_dist <= thr)
                else:
                    v_err_homo[thr] += np.mean(homo_dist <= thr)

    seq_type = np.array(seq_type)
    n_feats = np.array(n_feats)
    n_matches = np.array(n_matches)

    return i_err, v_err, i_err_homo, v_err_homo, [seq_type, n_feats, n_matches]


if __name__ == "__main__":
    errors = {}
    for method in methods:
        output_file = os.path.join(cache_dir, method + ".npy")
        read_function = generate_read_function(method)
        if os.path.exists(output_file):
            errors[method] = np.load(output_file, allow_pickle=True)
        else:
            extract_method(method)
            errors[method] = benchmark_features(read_function)
            np.save(output_file, errors[method])

    for name, method in zip(names, methods):
        i_err, v_err, i_err_hom, v_err_hom, _ = errors[method]

        print(f"====={name}=====")
        print(f"MMA@1 MMA@2 MMA@3 MHA@1 MHA@2 MHA@3: ", end="")
        for thr in range(1, 4):
            err = (i_err[thr] + v_err[thr]) / ((n_i + n_v) * 5)
            print(f"{err * 100:.2f}%", end=" ")
        for thr in range(1, 4):
            err_hom = (i_err_hom[thr] + v_err_hom[thr]) / ((n_i + n_v) * 5)
            print(f"{err_hom * 100:.2f}%", end=" ")
        print("")