File size: 64,038 Bytes
f8f5cdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Deformable DETR."""

import io
import pathlib
from collections import defaultdict
from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Tuple, Union

import numpy as np

from ...feature_extraction_utils import BatchFeature
from ...image_processing_utils import BaseImageProcessor, get_size_dict
from ...image_transforms import (
    PaddingMode,
    center_to_corners_format,
    corners_to_center_format,
    id_to_rgb,
    pad,
    rescale,
    resize,
    rgb_to_id,
    to_channel_dimension_format,
)
from ...image_utils import (
    IMAGENET_DEFAULT_MEAN,
    IMAGENET_DEFAULT_STD,
    ChannelDimension,
    ImageInput,
    PILImageResampling,
    get_image_size,
    infer_channel_dimension_format,
    is_scaled_image,
    make_list_of_images,
    to_numpy_array,
    valid_coco_detection_annotations,
    valid_coco_panoptic_annotations,
    valid_images,
)
from ...utils import (
    ExplicitEnum,
    TensorType,
    is_flax_available,
    is_jax_tensor,
    is_scipy_available,
    is_tf_available,
    is_tf_tensor,
    is_torch_available,
    is_torch_tensor,
    is_vision_available,
    logging,
)


if is_torch_available():
    import torch
    from torch import nn


if is_vision_available():
    import PIL

if is_scipy_available():
    import scipy.special
    import scipy.stats


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

AnnotationType = Dict[str, Union[int, str, List[Dict]]]


class AnnotionFormat(ExplicitEnum):
    COCO_DETECTION = "coco_detection"
    COCO_PANOPTIC = "coco_panoptic"


SUPPORTED_ANNOTATION_FORMATS = (AnnotionFormat.COCO_DETECTION, AnnotionFormat.COCO_PANOPTIC)


# Copied from transformers.models.detr.image_processing_detr.get_size_with_aspect_ratio
def get_size_with_aspect_ratio(image_size, size, max_size=None) -> Tuple[int, int]:
    """
    Computes the output image size given the input image size and the desired output size.

    Args:
        image_size (`Tuple[int, int]`):
            The input image size.
        size (`int`):
            The desired output size.
        max_size (`int`, *optional*):
            The maximum allowed output size.
    """
    height, width = image_size
    if max_size is not None:
        min_original_size = float(min((height, width)))
        max_original_size = float(max((height, width)))
        if max_original_size / min_original_size * size > max_size:
            size = int(round(max_size * min_original_size / max_original_size))

    if (height <= width and height == size) or (width <= height and width == size):
        return height, width

    if width < height:
        ow = size
        oh = int(size * height / width)
    else:
        oh = size
        ow = int(size * width / height)
    return (oh, ow)


# Copied from transformers.models.detr.image_processing_detr.get_resize_output_image_size
def get_resize_output_image_size(
    input_image: np.ndarray,
    size: Union[int, Tuple[int, int], List[int]],
    max_size: Optional[int] = None,
    input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> Tuple[int, int]:
    """
    Computes the output image size given the input image size and the desired output size. If the desired output size
    is a tuple or list, the output image size is returned as is. If the desired output size is an integer, the output
    image size is computed by keeping the aspect ratio of the input image size.

    Args:
        image_size (`Tuple[int, int]`):
            The input image size.
        size (`int`):
            The desired output size.
        max_size (`int`, *optional*):
            The maximum allowed output size.
        input_data_format (`ChannelDimension` or `str`, *optional*):
            The channel dimension format of the input image. If not provided, it will be inferred from the input image.
    """
    image_size = get_image_size(input_image, input_data_format)
    if isinstance(size, (list, tuple)):
        return size

    return get_size_with_aspect_ratio(image_size, size, max_size)


# Copied from transformers.models.detr.image_processing_detr.get_numpy_to_framework_fn
def get_numpy_to_framework_fn(arr) -> Callable:
    """
    Returns a function that converts a numpy array to the framework of the input array.

    Args:
        arr (`np.ndarray`): The array to convert.
    """
    if isinstance(arr, np.ndarray):
        return np.array
    if is_tf_available() and is_tf_tensor(arr):
        import tensorflow as tf

        return tf.convert_to_tensor
    if is_torch_available() and is_torch_tensor(arr):
        import torch

        return torch.tensor
    if is_flax_available() and is_jax_tensor(arr):
        import jax.numpy as jnp

        return jnp.array
    raise ValueError(f"Cannot convert arrays of type {type(arr)}")


# Copied from transformers.models.detr.image_processing_detr.safe_squeeze
def safe_squeeze(arr: np.ndarray, axis: Optional[int] = None) -> np.ndarray:
    """
    Squeezes an array, but only if the axis specified has dim 1.
    """
    if axis is None:
        return arr.squeeze()

    try:
        return arr.squeeze(axis=axis)
    except ValueError:
        return arr


# Copied from transformers.models.detr.image_processing_detr.normalize_annotation
def normalize_annotation(annotation: Dict, image_size: Tuple[int, int]) -> Dict:
    image_height, image_width = image_size
    norm_annotation = {}
    for key, value in annotation.items():
        if key == "boxes":
            boxes = value
            boxes = corners_to_center_format(boxes)
            boxes /= np.asarray([image_width, image_height, image_width, image_height], dtype=np.float32)
            norm_annotation[key] = boxes
        else:
            norm_annotation[key] = value
    return norm_annotation


# Copied from transformers.models.detr.image_processing_detr.max_across_indices
def max_across_indices(values: Iterable[Any]) -> List[Any]:
    """
    Return the maximum value across all indices of an iterable of values.
    """
    return [max(values_i) for values_i in zip(*values)]


# Copied from transformers.models.detr.image_processing_detr.get_max_height_width
def get_max_height_width(
    images: List[np.ndarray], input_data_format: Optional[Union[str, ChannelDimension]] = None
) -> List[int]:
    """
    Get the maximum height and width across all images in a batch.
    """
    if input_data_format is None:
        input_data_format = infer_channel_dimension_format(images[0])

    if input_data_format == ChannelDimension.FIRST:
        _, max_height, max_width = max_across_indices([img.shape for img in images])
    elif input_data_format == ChannelDimension.LAST:
        max_height, max_width, _ = max_across_indices([img.shape for img in images])
    else:
        raise ValueError(f"Invalid channel dimension format: {input_data_format}")
    return (max_height, max_width)


# Copied from transformers.models.detr.image_processing_detr.make_pixel_mask
def make_pixel_mask(
    image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None
) -> np.ndarray:
    """
    Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding.

    Args:
        image (`np.ndarray`):
            Image to make the pixel mask for.
        output_size (`Tuple[int, int]`):
            Output size of the mask.
    """
    input_height, input_width = get_image_size(image, channel_dim=input_data_format)
    mask = np.zeros(output_size, dtype=np.int64)
    mask[:input_height, :input_width] = 1
    return mask


# Copied from transformers.models.detr.image_processing_detr.convert_coco_poly_to_mask
def convert_coco_poly_to_mask(segmentations, height: int, width: int) -> np.ndarray:
    """
    Convert a COCO polygon annotation to a mask.

    Args:
        segmentations (`List[List[float]]`):
            List of polygons, each polygon represented by a list of x-y coordinates.
        height (`int`):
            Height of the mask.
        width (`int`):
            Width of the mask.
    """
    try:
        from pycocotools import mask as coco_mask
    except ImportError:
        raise ImportError("Pycocotools is not installed in your environment.")

    masks = []
    for polygons in segmentations:
        rles = coco_mask.frPyObjects(polygons, height, width)
        mask = coco_mask.decode(rles)
        if len(mask.shape) < 3:
            mask = mask[..., None]
        mask = np.asarray(mask, dtype=np.uint8)
        mask = np.any(mask, axis=2)
        masks.append(mask)
    if masks:
        masks = np.stack(masks, axis=0)
    else:
        masks = np.zeros((0, height, width), dtype=np.uint8)

    return masks


# Copied from transformers.models.detr.image_processing_detr.prepare_coco_detection_annotation with DETR->DeformableDetr
def prepare_coco_detection_annotation(
    image,
    target,
    return_segmentation_masks: bool = False,
    input_data_format: Optional[Union[ChannelDimension, str]] = None,
):
    """
    Convert the target in COCO format into the format expected by DeformableDetr.
    """
    image_height, image_width = get_image_size(image, channel_dim=input_data_format)

    image_id = target["image_id"]
    image_id = np.asarray([image_id], dtype=np.int64)

    # Get all COCO annotations for the given image.
    annotations = target["annotations"]
    annotations = [obj for obj in annotations if "iscrowd" not in obj or obj["iscrowd"] == 0]

    classes = [obj["category_id"] for obj in annotations]
    classes = np.asarray(classes, dtype=np.int64)

    # for conversion to coco api
    area = np.asarray([obj["area"] for obj in annotations], dtype=np.float32)
    iscrowd = np.asarray([obj["iscrowd"] if "iscrowd" in obj else 0 for obj in annotations], dtype=np.int64)

    boxes = [obj["bbox"] for obj in annotations]
    # guard against no boxes via resizing
    boxes = np.asarray(boxes, dtype=np.float32).reshape(-1, 4)
    boxes[:, 2:] += boxes[:, :2]
    boxes[:, 0::2] = boxes[:, 0::2].clip(min=0, max=image_width)
    boxes[:, 1::2] = boxes[:, 1::2].clip(min=0, max=image_height)

    keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0])

    new_target = {}
    new_target["image_id"] = image_id
    new_target["class_labels"] = classes[keep]
    new_target["boxes"] = boxes[keep]
    new_target["area"] = area[keep]
    new_target["iscrowd"] = iscrowd[keep]
    new_target["orig_size"] = np.asarray([int(image_height), int(image_width)], dtype=np.int64)

    if annotations and "keypoints" in annotations[0]:
        keypoints = [obj["keypoints"] for obj in annotations]
        keypoints = np.asarray(keypoints, dtype=np.float32)
        num_keypoints = keypoints.shape[0]
        keypoints = keypoints.reshape((-1, 3)) if num_keypoints else keypoints
        new_target["keypoints"] = keypoints[keep]

    if return_segmentation_masks:
        segmentation_masks = [obj["segmentation"] for obj in annotations]
        masks = convert_coco_poly_to_mask(segmentation_masks, image_height, image_width)
        new_target["masks"] = masks[keep]

    return new_target


# Copied from transformers.models.detr.image_processing_detr.masks_to_boxes
def masks_to_boxes(masks: np.ndarray) -> np.ndarray:
    """
    Compute the bounding boxes around the provided panoptic segmentation masks.

    Args:
        masks: masks in format `[number_masks, height, width]` where N is the number of masks

    Returns:
        boxes: bounding boxes in format `[number_masks, 4]` in xyxy format
    """
    if masks.size == 0:
        return np.zeros((0, 4))

    h, w = masks.shape[-2:]
    y = np.arange(0, h, dtype=np.float32)
    x = np.arange(0, w, dtype=np.float32)
    # see https://github.com/pytorch/pytorch/issues/50276
    y, x = np.meshgrid(y, x, indexing="ij")

    x_mask = masks * np.expand_dims(x, axis=0)
    x_max = x_mask.reshape(x_mask.shape[0], -1).max(-1)
    x = np.ma.array(x_mask, mask=~(np.array(masks, dtype=bool)))
    x_min = x.filled(fill_value=1e8)
    x_min = x_min.reshape(x_min.shape[0], -1).min(-1)

    y_mask = masks * np.expand_dims(y, axis=0)
    y_max = y_mask.reshape(x_mask.shape[0], -1).max(-1)
    y = np.ma.array(y_mask, mask=~(np.array(masks, dtype=bool)))
    y_min = y.filled(fill_value=1e8)
    y_min = y_min.reshape(y_min.shape[0], -1).min(-1)

    return np.stack([x_min, y_min, x_max, y_max], 1)


# Copied from transformers.models.detr.image_processing_detr.prepare_coco_panoptic_annotation with DETR->DeformableDetr
def prepare_coco_panoptic_annotation(
    image: np.ndarray,
    target: Dict,
    masks_path: Union[str, pathlib.Path],
    return_masks: bool = True,
    input_data_format: Union[ChannelDimension, str] = None,
) -> Dict:
    """
    Prepare a coco panoptic annotation for DeformableDetr.
    """
    image_height, image_width = get_image_size(image, channel_dim=input_data_format)
    annotation_path = pathlib.Path(masks_path) / target["file_name"]

    new_target = {}
    new_target["image_id"] = np.asarray([target["image_id"] if "image_id" in target else target["id"]], dtype=np.int64)
    new_target["size"] = np.asarray([image_height, image_width], dtype=np.int64)
    new_target["orig_size"] = np.asarray([image_height, image_width], dtype=np.int64)

    if "segments_info" in target:
        masks = np.asarray(PIL.Image.open(annotation_path), dtype=np.uint32)
        masks = rgb_to_id(masks)

        ids = np.array([segment_info["id"] for segment_info in target["segments_info"]])
        masks = masks == ids[:, None, None]
        masks = masks.astype(np.uint8)
        if return_masks:
            new_target["masks"] = masks
        new_target["boxes"] = masks_to_boxes(masks)
        new_target["class_labels"] = np.array(
            [segment_info["category_id"] for segment_info in target["segments_info"]], dtype=np.int64
        )
        new_target["iscrowd"] = np.asarray(
            [segment_info["iscrowd"] for segment_info in target["segments_info"]], dtype=np.int64
        )
        new_target["area"] = np.asarray(
            [segment_info["area"] for segment_info in target["segments_info"]], dtype=np.float32
        )

    return new_target


# Copied from transformers.models.detr.image_processing_detr.get_segmentation_image
def get_segmentation_image(
    masks: np.ndarray, input_size: Tuple, target_size: Tuple, stuff_equiv_classes, deduplicate=False
):
    h, w = input_size
    final_h, final_w = target_size

    m_id = scipy.special.softmax(masks.transpose(0, 1), -1)

    if m_id.shape[-1] == 0:
        # We didn't detect any mask :(
        m_id = np.zeros((h, w), dtype=np.int64)
    else:
        m_id = m_id.argmax(-1).reshape(h, w)

    if deduplicate:
        # Merge the masks corresponding to the same stuff class
        for equiv in stuff_equiv_classes.values():
            for eq_id in equiv:
                m_id[m_id == eq_id] = equiv[0]

    seg_img = id_to_rgb(m_id)
    seg_img = resize(seg_img, (final_w, final_h), resample=PILImageResampling.NEAREST)
    return seg_img


# Copied from transformers.models.detr.image_processing_detr.get_mask_area
def get_mask_area(seg_img: np.ndarray, target_size: Tuple[int, int], n_classes: int) -> np.ndarray:
    final_h, final_w = target_size
    np_seg_img = seg_img.astype(np.uint8)
    np_seg_img = np_seg_img.reshape(final_h, final_w, 3)
    m_id = rgb_to_id(np_seg_img)
    area = [(m_id == i).sum() for i in range(n_classes)]
    return area


# Copied from transformers.models.detr.image_processing_detr.score_labels_from_class_probabilities
def score_labels_from_class_probabilities(logits: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
    probs = scipy.special.softmax(logits, axis=-1)
    labels = probs.argmax(-1, keepdims=True)
    scores = np.take_along_axis(probs, labels, axis=-1)
    scores, labels = scores.squeeze(-1), labels.squeeze(-1)
    return scores, labels


# Copied from transformers.models.detr.image_processing_detr.post_process_panoptic_sample
def post_process_panoptic_sample(
    out_logits: np.ndarray,
    masks: np.ndarray,
    boxes: np.ndarray,
    processed_size: Tuple[int, int],
    target_size: Tuple[int, int],
    is_thing_map: Dict,
    threshold=0.85,
) -> Dict:
    """
    Converts the output of [`DetrForSegmentation`] into panoptic segmentation predictions for a single sample.

    Args:
        out_logits (`torch.Tensor`):
            The logits for this sample.
        masks (`torch.Tensor`):
            The predicted segmentation masks for this sample.
        boxes (`torch.Tensor`):
            The prediced bounding boxes for this sample. The boxes are in the normalized format `(center_x, center_y,
            width, height)` and values between `[0, 1]`, relative to the size the image (disregarding padding).
        processed_size (`Tuple[int, int]`):
            The processed size of the image `(height, width)`, as returned by the preprocessing step i.e. the size
            after data augmentation but before batching.
        target_size (`Tuple[int, int]`):
            The target size of the image, `(height, width)` corresponding to the requested final size of the
            prediction.
        is_thing_map (`Dict`):
            A dictionary mapping class indices to a boolean value indicating whether the class is a thing or not.
        threshold (`float`, *optional*, defaults to 0.85):
            The threshold used to binarize the segmentation masks.
    """
    # we filter empty queries and detection below threshold
    scores, labels = score_labels_from_class_probabilities(out_logits)
    keep = (labels != out_logits.shape[-1] - 1) & (scores > threshold)

    cur_scores = scores[keep]
    cur_classes = labels[keep]
    cur_boxes = center_to_corners_format(boxes[keep])

    if len(cur_boxes) != len(cur_classes):
        raise ValueError("Not as many boxes as there are classes")

    cur_masks = masks[keep]
    cur_masks = resize(cur_masks[:, None], processed_size, resample=PILImageResampling.BILINEAR)
    cur_masks = safe_squeeze(cur_masks, 1)
    b, h, w = cur_masks.shape

    # It may be that we have several predicted masks for the same stuff class.
    # In the following, we track the list of masks ids for each stuff class (they are merged later on)
    cur_masks = cur_masks.reshape(b, -1)
    stuff_equiv_classes = defaultdict(list)
    for k, label in enumerate(cur_classes):
        if not is_thing_map[label]:
            stuff_equiv_classes[label].append(k)

    seg_img = get_segmentation_image(cur_masks, processed_size, target_size, stuff_equiv_classes, deduplicate=True)
    area = get_mask_area(cur_masks, processed_size, n_classes=len(cur_scores))

    # We filter out any mask that is too small
    if cur_classes.size() > 0:
        # We know filter empty masks as long as we find some
        filtered_small = np.array([a <= 4 for a in area], dtype=bool)
        while filtered_small.any():
            cur_masks = cur_masks[~filtered_small]
            cur_scores = cur_scores[~filtered_small]
            cur_classes = cur_classes[~filtered_small]
            seg_img = get_segmentation_image(cur_masks, (h, w), target_size, stuff_equiv_classes, deduplicate=True)
            area = get_mask_area(seg_img, target_size, n_classes=len(cur_scores))
            filtered_small = np.array([a <= 4 for a in area], dtype=bool)
    else:
        cur_classes = np.ones((1, 1), dtype=np.int64)

    segments_info = [
        {"id": i, "isthing": is_thing_map[cat], "category_id": int(cat), "area": a}
        for i, (cat, a) in enumerate(zip(cur_classes, area))
    ]
    del cur_classes

    with io.BytesIO() as out:
        PIL.Image.fromarray(seg_img).save(out, format="PNG")
        predictions = {"png_string": out.getvalue(), "segments_info": segments_info}

    return predictions


# Copied from transformers.models.detr.image_processing_detr.resize_annotation
def resize_annotation(
    annotation: Dict[str, Any],
    orig_size: Tuple[int, int],
    target_size: Tuple[int, int],
    threshold: float = 0.5,
    resample: PILImageResampling = PILImageResampling.NEAREST,
):
    """
    Resizes an annotation to a target size.

    Args:
        annotation (`Dict[str, Any]`):
            The annotation dictionary.
        orig_size (`Tuple[int, int]`):
            The original size of the input image.
        target_size (`Tuple[int, int]`):
            The target size of the image, as returned by the preprocessing `resize` step.
        threshold (`float`, *optional*, defaults to 0.5):
            The threshold used to binarize the segmentation masks.
        resample (`PILImageResampling`, defaults to `PILImageResampling.NEAREST`):
            The resampling filter to use when resizing the masks.
    """
    ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(target_size, orig_size))
    ratio_height, ratio_width = ratios

    new_annotation = {}
    new_annotation["size"] = target_size

    for key, value in annotation.items():
        if key == "boxes":
            boxes = value
            scaled_boxes = boxes * np.asarray([ratio_width, ratio_height, ratio_width, ratio_height], dtype=np.float32)
            new_annotation["boxes"] = scaled_boxes
        elif key == "area":
            area = value
            scaled_area = area * (ratio_width * ratio_height)
            new_annotation["area"] = scaled_area
        elif key == "masks":
            masks = value[:, None]
            masks = np.array([resize(mask, target_size, resample=resample) for mask in masks])
            masks = masks.astype(np.float32)
            masks = masks[:, 0] > threshold
            new_annotation["masks"] = masks
        elif key == "size":
            new_annotation["size"] = target_size
        else:
            new_annotation[key] = value

    return new_annotation


# Copied from transformers.models.detr.image_processing_detr.binary_mask_to_rle
def binary_mask_to_rle(mask):
    """
    Converts given binary mask of shape `(height, width)` to the run-length encoding (RLE) format.

    Args:
        mask (`torch.Tensor` or `numpy.array`):
            A binary mask tensor of shape `(height, width)` where 0 denotes background and 1 denotes the target
            segment_id or class_id.
    Returns:
        `List`: Run-length encoded list of the binary mask. Refer to COCO API for more information about the RLE
        format.
    """
    if is_torch_tensor(mask):
        mask = mask.numpy()

    pixels = mask.flatten()
    pixels = np.concatenate([[0], pixels, [0]])
    runs = np.where(pixels[1:] != pixels[:-1])[0] + 1
    runs[1::2] -= runs[::2]
    return list(runs)


# Copied from transformers.models.detr.image_processing_detr.convert_segmentation_to_rle
def convert_segmentation_to_rle(segmentation):
    """
    Converts given segmentation map of shape `(height, width)` to the run-length encoding (RLE) format.

    Args:
        segmentation (`torch.Tensor` or `numpy.array`):
            A segmentation map of shape `(height, width)` where each value denotes a segment or class id.
    Returns:
        `List[List]`: A list of lists, where each list is the run-length encoding of a segment / class id.
    """
    segment_ids = torch.unique(segmentation)

    run_length_encodings = []
    for idx in segment_ids:
        mask = torch.where(segmentation == idx, 1, 0)
        rle = binary_mask_to_rle(mask)
        run_length_encodings.append(rle)

    return run_length_encodings


# Copied from transformers.models.detr.image_processing_detr.remove_low_and_no_objects
def remove_low_and_no_objects(masks, scores, labels, object_mask_threshold, num_labels):
    """
    Binarize the given masks using `object_mask_threshold`, it returns the associated values of `masks`, `scores` and
    `labels`.

    Args:
        masks (`torch.Tensor`):
            A tensor of shape `(num_queries, height, width)`.
        scores (`torch.Tensor`):
            A tensor of shape `(num_queries)`.
        labels (`torch.Tensor`):
            A tensor of shape `(num_queries)`.
        object_mask_threshold (`float`):
            A number between 0 and 1 used to binarize the masks.
    Raises:
        `ValueError`: Raised when the first dimension doesn't match in all input tensors.
    Returns:
        `Tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`]`: The `masks`, `scores` and `labels` without the region
        < `object_mask_threshold`.
    """
    if not (masks.shape[0] == scores.shape[0] == labels.shape[0]):
        raise ValueError("mask, scores and labels must have the same shape!")

    to_keep = labels.ne(num_labels) & (scores > object_mask_threshold)

    return masks[to_keep], scores[to_keep], labels[to_keep]


# Copied from transformers.models.detr.image_processing_detr.check_segment_validity
def check_segment_validity(mask_labels, mask_probs, k, mask_threshold=0.5, overlap_mask_area_threshold=0.8):
    # Get the mask associated with the k class
    mask_k = mask_labels == k
    mask_k_area = mask_k.sum()

    # Compute the area of all the stuff in query k
    original_area = (mask_probs[k] >= mask_threshold).sum()
    mask_exists = mask_k_area > 0 and original_area > 0

    # Eliminate disconnected tiny segments
    if mask_exists:
        area_ratio = mask_k_area / original_area
        if not area_ratio.item() > overlap_mask_area_threshold:
            mask_exists = False

    return mask_exists, mask_k


# Copied from transformers.models.detr.image_processing_detr.compute_segments
def compute_segments(
    mask_probs,
    pred_scores,
    pred_labels,
    mask_threshold: float = 0.5,
    overlap_mask_area_threshold: float = 0.8,
    label_ids_to_fuse: Optional[Set[int]] = None,
    target_size: Tuple[int, int] = None,
):
    height = mask_probs.shape[1] if target_size is None else target_size[0]
    width = mask_probs.shape[2] if target_size is None else target_size[1]

    segmentation = torch.zeros((height, width), dtype=torch.int32, device=mask_probs.device)
    segments: List[Dict] = []

    if target_size is not None:
        mask_probs = nn.functional.interpolate(
            mask_probs.unsqueeze(0), size=target_size, mode="bilinear", align_corners=False
        )[0]

    current_segment_id = 0

    # Weigh each mask by its prediction score
    mask_probs *= pred_scores.view(-1, 1, 1)
    mask_labels = mask_probs.argmax(0)  # [height, width]

    # Keep track of instances of each class
    stuff_memory_list: Dict[str, int] = {}
    for k in range(pred_labels.shape[0]):
        pred_class = pred_labels[k].item()
        should_fuse = pred_class in label_ids_to_fuse

        # Check if mask exists and large enough to be a segment
        mask_exists, mask_k = check_segment_validity(
            mask_labels, mask_probs, k, mask_threshold, overlap_mask_area_threshold
        )

        if mask_exists:
            if pred_class in stuff_memory_list:
                current_segment_id = stuff_memory_list[pred_class]
            else:
                current_segment_id += 1

            # Add current object segment to final segmentation map
            segmentation[mask_k] = current_segment_id
            segment_score = round(pred_scores[k].item(), 6)
            segments.append(
                {
                    "id": current_segment_id,
                    "label_id": pred_class,
                    "was_fused": should_fuse,
                    "score": segment_score,
                }
            )
            if should_fuse:
                stuff_memory_list[pred_class] = current_segment_id

    return segmentation, segments


class DeformableDetrImageProcessor(BaseImageProcessor):
    r"""
    Constructs a Deformable DETR image processor.

    Args:
        format (`str`, *optional*, defaults to `"coco_detection"`):
            Data format of the annotations. One of "coco_detection" or "coco_panoptic".
        do_resize (`bool`, *optional*, defaults to `True`):
            Controls whether to resize the image's (height, width) dimensions to the specified `size`. Can be
            overridden by the `do_resize` parameter in the `preprocess` method.
        size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 800, "longest_edge": 1333}`):
            Size of the image's (height, width) dimensions after resizing. Can be overridden by the `size` parameter in
            the `preprocess` method.
        resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
            Resampling filter to use if resizing the image.
        do_rescale (`bool`, *optional*, defaults to `True`):
            Controls whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the
            `do_rescale` parameter in the `preprocess` method.
        rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
            Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
            `preprocess` method.
        do_normalize:
            Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the
            `preprocess` method.
        image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`):
            Mean values to use when normalizing the image. Can be a single value or a list of values, one for each
            channel. Can be overridden by the `image_mean` parameter in the `preprocess` method.
        image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`):
            Standard deviation values to use when normalizing the image. Can be a single value or a list of values, one
            for each channel. Can be overridden by the `image_std` parameter in the `preprocess` method.
        do_pad (`bool`, *optional*, defaults to `True`):
            Controls whether to pad the image to the largest image in a batch and create a pixel mask. Can be
            overridden by the `do_pad` parameter in the `preprocess` method.
    """

    model_input_names = ["pixel_values", "pixel_mask"]

    # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.__init__
    def __init__(
        self,
        format: Union[str, AnnotionFormat] = AnnotionFormat.COCO_DETECTION,
        do_resize: bool = True,
        size: Dict[str, int] = None,
        resample: PILImageResampling = PILImageResampling.BILINEAR,
        do_rescale: bool = True,
        rescale_factor: Union[int, float] = 1 / 255,
        do_normalize: bool = True,
        image_mean: Union[float, List[float]] = None,
        image_std: Union[float, List[float]] = None,
        do_pad: bool = True,
        **kwargs,
    ) -> None:
        if "pad_and_return_pixel_mask" in kwargs:
            do_pad = kwargs.pop("pad_and_return_pixel_mask")

        if "max_size" in kwargs:
            logger.warning_once(
                "The `max_size` parameter is deprecated and will be removed in v4.26. "
                "Please specify in `size['longest_edge'] instead`.",
            )
            max_size = kwargs.pop("max_size")
        else:
            max_size = None if size is None else 1333

        size = size if size is not None else {"shortest_edge": 800, "longest_edge": 1333}
        size = get_size_dict(size, max_size=max_size, default_to_square=False)

        super().__init__(**kwargs)
        self.format = format
        self.do_resize = do_resize
        self.size = size
        self.resample = resample
        self.do_rescale = do_rescale
        self.rescale_factor = rescale_factor
        self.do_normalize = do_normalize
        self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
        self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
        self.do_pad = do_pad

    @classmethod
    # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.from_dict with Detr->DeformableDetr
    def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
        """
        Overrides the `from_dict` method from the base class to make sure parameters are updated if image processor is
        created using from_dict and kwargs e.g. `DeformableDetrImageProcessor.from_pretrained(checkpoint, size=600,
        max_size=800)`
        """
        image_processor_dict = image_processor_dict.copy()
        if "max_size" in kwargs:
            image_processor_dict["max_size"] = kwargs.pop("max_size")
        if "pad_and_return_pixel_mask" in kwargs:
            image_processor_dict["pad_and_return_pixel_mask"] = kwargs.pop("pad_and_return_pixel_mask")
        return super().from_dict(image_processor_dict, **kwargs)

    # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_annotation with DETR->DeformableDetr
    def prepare_annotation(
        self,
        image: np.ndarray,
        target: Dict,
        format: Optional[AnnotionFormat] = None,
        return_segmentation_masks: bool = None,
        masks_path: Optional[Union[str, pathlib.Path]] = None,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
    ) -> Dict:
        """
        Prepare an annotation for feeding into DeformableDetr model.
        """
        format = format if format is not None else self.format

        if format == AnnotionFormat.COCO_DETECTION:
            return_segmentation_masks = False if return_segmentation_masks is None else return_segmentation_masks
            target = prepare_coco_detection_annotation(
                image, target, return_segmentation_masks, input_data_format=input_data_format
            )
        elif format == AnnotionFormat.COCO_PANOPTIC:
            return_segmentation_masks = True if return_segmentation_masks is None else return_segmentation_masks
            target = prepare_coco_panoptic_annotation(
                image,
                target,
                masks_path=masks_path,
                return_masks=return_segmentation_masks,
                input_data_format=input_data_format,
            )
        else:
            raise ValueError(f"Format {format} is not supported.")
        return target

    # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare
    def prepare(self, image, target, return_segmentation_masks=None, masks_path=None):
        logger.warning_once(
            "The `prepare` method is deprecated and will be removed in a v4.33. "
            "Please use `prepare_annotation` instead. Note: the `prepare_annotation` method "
            "does not return the image anymore.",
        )
        target = self.prepare_annotation(image, target, return_segmentation_masks, masks_path, self.format)
        return image, target

    # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.convert_coco_poly_to_mask
    def convert_coco_poly_to_mask(self, *args, **kwargs):
        logger.warning_once("The `convert_coco_poly_to_mask` method is deprecated and will be removed in v4.33. ")
        return convert_coco_poly_to_mask(*args, **kwargs)

    # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_coco_detection
    def prepare_coco_detection(self, *args, **kwargs):
        logger.warning_once("The `prepare_coco_detection` method is deprecated and will be removed in v4.33. ")
        return prepare_coco_detection_annotation(*args, **kwargs)

    # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_coco_panoptic
    def prepare_coco_panoptic(self, *args, **kwargs):
        logger.warning_once("The `prepare_coco_panoptic` method is deprecated and will be removed in v4.33. ")
        return prepare_coco_panoptic_annotation(*args, **kwargs)

    # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.resize
    def resize(
        self,
        image: np.ndarray,
        size: Dict[str, int],
        resample: PILImageResampling = PILImageResampling.BILINEAR,
        data_format: Optional[ChannelDimension] = None,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
        **kwargs,
    ) -> np.ndarray:
        """
        Resize the image to the given size. Size can be `min_size` (scalar) or `(height, width)` tuple. If size is an
        int, smaller edge of the image will be matched to this number.

        Args:
            image (`np.ndarray`):
                Image to resize.
            size (`Dict[str, int]`):
                Dictionary containing the size to resize to. Can contain the keys `shortest_edge` and `longest_edge` or
                `height` and `width`.
            resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
                Resampling filter to use if resizing the image.
            data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format for the output image. If unset, the channel dimension format of the input
                image is used.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format of the input image. If not provided, it will be inferred.
        """
        if "max_size" in kwargs:
            logger.warning_once(
                "The `max_size` parameter is deprecated and will be removed in v4.26. "
                "Please specify in `size['longest_edge'] instead`.",
            )
            max_size = kwargs.pop("max_size")
        else:
            max_size = None
        size = get_size_dict(size, max_size=max_size, default_to_square=False)
        if "shortest_edge" in size and "longest_edge" in size:
            size = get_resize_output_image_size(
                image, size["shortest_edge"], size["longest_edge"], input_data_format=input_data_format
            )
        elif "height" in size and "width" in size:
            size = (size["height"], size["width"])
        else:
            raise ValueError(
                "Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got"
                f" {size.keys()}."
            )
        image = resize(
            image, size=size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs
        )
        return image

    # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.resize_annotation
    def resize_annotation(
        self,
        annotation,
        orig_size,
        size,
        resample: PILImageResampling = PILImageResampling.NEAREST,
    ) -> Dict:
        """
        Resize the annotation to match the resized image. If size is an int, smaller edge of the mask will be matched
        to this number.
        """
        return resize_annotation(annotation, orig_size=orig_size, target_size=size, resample=resample)

    # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.rescale
    def rescale(
        self,
        image: np.ndarray,
        rescale_factor: float,
        data_format: Optional[Union[str, ChannelDimension]] = None,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
    ) -> np.ndarray:
        """
        Rescale the image by the given factor. image = image * rescale_factor.

        Args:
            image (`np.ndarray`):
                Image to rescale.
            rescale_factor (`float`):
                The value to use for rescaling.
            data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format for the output image. If unset, the channel dimension format of the input
                image is used. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
            input_data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format for the input image. If unset, is inferred from the input image. Can be
                one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
        """
        return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format)

    # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize_annotation
    def normalize_annotation(self, annotation: Dict, image_size: Tuple[int, int]) -> Dict:
        """
        Normalize the boxes in the annotation from `[top_left_x, top_left_y, bottom_right_x, bottom_right_y]` to
        `[center_x, center_y, width, height]` format.
        """
        return normalize_annotation(annotation, image_size=image_size)

    # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor._pad_image
    def _pad_image(
        self,
        image: np.ndarray,
        output_size: Tuple[int, int],
        constant_values: Union[float, Iterable[float]] = 0,
        data_format: Optional[ChannelDimension] = None,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
    ) -> np.ndarray:
        """
        Pad an image with zeros to the given size.
        """
        input_height, input_width = get_image_size(image, channel_dim=input_data_format)
        output_height, output_width = output_size

        pad_bottom = output_height - input_height
        pad_right = output_width - input_width
        padding = ((0, pad_bottom), (0, pad_right))
        padded_image = pad(
            image,
            padding,
            mode=PaddingMode.CONSTANT,
            constant_values=constant_values,
            data_format=data_format,
            input_data_format=input_data_format,
        )
        return padded_image

    # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.pad
    def pad(
        self,
        images: List[np.ndarray],
        constant_values: Union[float, Iterable[float]] = 0,
        return_pixel_mask: bool = True,
        return_tensors: Optional[Union[str, TensorType]] = None,
        data_format: Optional[ChannelDimension] = None,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
    ) -> BatchFeature:
        """
        Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width
        in the batch and optionally returns their corresponding pixel mask.

        Args:
            image (`np.ndarray`):
                Image to pad.
            constant_values (`float` or `Iterable[float]`, *optional*):
                The value to use for the padding if `mode` is `"constant"`.
            return_pixel_mask (`bool`, *optional*, defaults to `True`):
                Whether to return a pixel mask.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                    - Unset: Return a list of `np.ndarray`.
                    - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                    - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                    - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                    - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
            data_format (`str` or `ChannelDimension`, *optional*):
                The channel dimension format of the image. If not provided, it will be the same as the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format of the input image. If not provided, it will be inferred.
        """
        pad_size = get_max_height_width(images, input_data_format=input_data_format)

        padded_images = [
            self._pad_image(
                image,
                pad_size,
                constant_values=constant_values,
                data_format=data_format,
                input_data_format=input_data_format,
            )
            for image in images
        ]
        data = {"pixel_values": padded_images}

        if return_pixel_mask:
            masks = [
                make_pixel_mask(image=image, output_size=pad_size, input_data_format=input_data_format)
                for image in images
            ]
            data["pixel_mask"] = masks

        return BatchFeature(data=data, tensor_type=return_tensors)

    # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.preprocess
    def preprocess(
        self,
        images: ImageInput,
        annotations: Optional[Union[AnnotationType, List[AnnotationType]]] = None,
        return_segmentation_masks: bool = None,
        masks_path: Optional[Union[str, pathlib.Path]] = None,
        do_resize: Optional[bool] = None,
        size: Optional[Dict[str, int]] = None,
        resample=None,  # PILImageResampling
        do_rescale: Optional[bool] = None,
        rescale_factor: Optional[Union[int, float]] = None,
        do_normalize: Optional[bool] = None,
        image_mean: Optional[Union[float, List[float]]] = None,
        image_std: Optional[Union[float, List[float]]] = None,
        do_pad: Optional[bool] = None,
        format: Optional[Union[str, AnnotionFormat]] = None,
        return_tensors: Optional[Union[TensorType, str]] = None,
        data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
        **kwargs,
    ) -> BatchFeature:
        """
        Preprocess an image or a batch of images so that it can be used by the model.

        Args:
            images (`ImageInput`):
                Image or batch of images to preprocess. Expects a single or batch of images with pixel values ranging
                from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`.
            annotations (`AnnotationType` or `List[AnnotationType]`, *optional*):
                List of annotations associated with the image or batch of images. If annotation is for object
                detection, the annotations should be a dictionary with the following keys:
                - "image_id" (`int`): The image id.
                - "annotations" (`List[Dict]`): List of annotations for an image. Each annotation should be a
                  dictionary. An image can have no annotations, in which case the list should be empty.
                If annotation is for segmentation, the annotations should be a dictionary with the following keys:
                - "image_id" (`int`): The image id.
                - "segments_info" (`List[Dict]`): List of segments for an image. Each segment should be a dictionary.
                  An image can have no segments, in which case the list should be empty.
                - "file_name" (`str`): The file name of the image.
            return_segmentation_masks (`bool`, *optional*, defaults to self.return_segmentation_masks):
                Whether to return segmentation masks.
            masks_path (`str` or `pathlib.Path`, *optional*):
                Path to the directory containing the segmentation masks.
            do_resize (`bool`, *optional*, defaults to self.do_resize):
                Whether to resize the image.
            size (`Dict[str, int]`, *optional*, defaults to self.size):
                Size of the image after resizing.
            resample (`PILImageResampling`, *optional*, defaults to self.resample):
                Resampling filter to use when resizing the image.
            do_rescale (`bool`, *optional*, defaults to self.do_rescale):
                Whether to rescale the image.
            rescale_factor (`float`, *optional*, defaults to self.rescale_factor):
                Rescale factor to use when rescaling the image.
            do_normalize (`bool`, *optional*, defaults to self.do_normalize):
                Whether to normalize the image.
            image_mean (`float` or `List[float]`, *optional*, defaults to self.image_mean):
                Mean to use when normalizing the image.
            image_std (`float` or `List[float]`, *optional*, defaults to self.image_std):
                Standard deviation to use when normalizing the image.
            do_pad (`bool`, *optional*, defaults to self.do_pad):
                Whether to pad the image.
            format (`str` or `AnnotionFormat`, *optional*, defaults to self.format):
                Format of the annotations.
            return_tensors (`str` or `TensorType`, *optional*, defaults to self.return_tensors):
                Type of tensors to return. If `None`, will return the list of images.
            data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
                The channel dimension format for the output image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - Unset: Use the channel dimension format of the input image.
            input_data_format (`ChannelDimension` or `str`, *optional*):
                The channel dimension format for the input image. If unset, the channel dimension format is inferred
                from the input image. Can be one of:
                - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
                - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
                - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
        """
        if "pad_and_return_pixel_mask" in kwargs:
            logger.warning_once(
                "The `pad_and_return_pixel_mask` argument is deprecated and will be removed in a future version, "
                "use `do_pad` instead."
            )
            do_pad = kwargs.pop("pad_and_return_pixel_mask")

        max_size = None
        if "max_size" in kwargs:
            logger.warning_once(
                "The `max_size` argument is deprecated and will be removed in a future version, use"
                " `size['longest_edge']` instead."
            )
            size = kwargs.pop("max_size")

        do_resize = self.do_resize if do_resize is None else do_resize
        size = self.size if size is None else size
        size = get_size_dict(size=size, max_size=max_size, default_to_square=False)
        resample = self.resample if resample is None else resample
        do_rescale = self.do_rescale if do_rescale is None else do_rescale
        rescale_factor = self.rescale_factor if rescale_factor is None else rescale_factor
        do_normalize = self.do_normalize if do_normalize is None else do_normalize
        image_mean = self.image_mean if image_mean is None else image_mean
        image_std = self.image_std if image_std is None else image_std
        do_pad = self.do_pad if do_pad is None else do_pad
        format = self.format if format is None else format

        if do_resize is not None and size is None:
            raise ValueError("Size and max_size must be specified if do_resize is True.")

        if do_rescale is not None and rescale_factor is None:
            raise ValueError("Rescale factor must be specified if do_rescale is True.")

        if do_normalize is not None and (image_mean is None or image_std is None):
            raise ValueError("Image mean and std must be specified if do_normalize is True.")

        images = make_list_of_images(images)
        if annotations is not None and isinstance(annotations, dict):
            annotations = [annotations]

        if annotations is not None and len(images) != len(annotations):
            raise ValueError(
                f"The number of images ({len(images)}) and annotations ({len(annotations)}) do not match."
            )

        if not valid_images(images):
            raise ValueError(
                "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
                "torch.Tensor, tf.Tensor or jax.ndarray."
            )

        format = AnnotionFormat(format)
        if annotations is not None:
            if format == AnnotionFormat.COCO_DETECTION and not valid_coco_detection_annotations(annotations):
                raise ValueError(
                    "Invalid COCO detection annotations. Annotations must a dict (single image) of list of dicts"
                    "(batch of images) with the following keys: `image_id` and `annotations`, with the latter "
                    "being a list of annotations in the COCO format."
                )
            elif format == AnnotionFormat.COCO_PANOPTIC and not valid_coco_panoptic_annotations(annotations):
                raise ValueError(
                    "Invalid COCO panoptic annotations. Annotations must a dict (single image) of list of dicts "
                    "(batch of images) with the following keys: `image_id`, `file_name` and `segments_info`, with "
                    "the latter being a list of annotations in the COCO format."
                )
            elif format not in SUPPORTED_ANNOTATION_FORMATS:
                raise ValueError(
                    f"Unsupported annotation format: {format} must be one of {SUPPORTED_ANNOTATION_FORMATS}"
                )

        if (
            masks_path is not None
            and format == AnnotionFormat.COCO_PANOPTIC
            and not isinstance(masks_path, (pathlib.Path, str))
        ):
            raise ValueError(
                "The path to the directory containing the mask PNG files should be provided as a"
                f" `pathlib.Path` or string object, but is {type(masks_path)} instead."
            )

        # All transformations expect numpy arrays
        images = [to_numpy_array(image) for image in images]

        if is_scaled_image(images[0]) and do_rescale:
            logger.warning_once(
                "It looks like you are trying to rescale already rescaled images. If the input"
                " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
            )

        if input_data_format is None:
            # We assume that all images have the same channel dimension format.
            input_data_format = infer_channel_dimension_format(images[0])

        # prepare (COCO annotations as a list of Dict -> DETR target as a single Dict per image)
        if annotations is not None:
            prepared_images = []
            prepared_annotations = []
            for image, target in zip(images, annotations):
                target = self.prepare_annotation(
                    image,
                    target,
                    format,
                    return_segmentation_masks=return_segmentation_masks,
                    masks_path=masks_path,
                    input_data_format=input_data_format,
                )
                prepared_images.append(image)
                prepared_annotations.append(target)
            images = prepared_images
            annotations = prepared_annotations
            del prepared_images, prepared_annotations

        # transformations
        if do_resize:
            if annotations is not None:
                resized_images, resized_annotations = [], []
                for image, target in zip(images, annotations):
                    orig_size = get_image_size(image, input_data_format)
                    resized_image = self.resize(
                        image, size=size, max_size=max_size, resample=resample, input_data_format=input_data_format
                    )
                    resized_annotation = self.resize_annotation(
                        target, orig_size, get_image_size(resized_image, input_data_format)
                    )
                    resized_images.append(resized_image)
                    resized_annotations.append(resized_annotation)
                images = resized_images
                annotations = resized_annotations
                del resized_images, resized_annotations
            else:
                images = [
                    self.resize(image, size=size, resample=resample, input_data_format=input_data_format)
                    for image in images
                ]

        if do_rescale:
            images = [self.rescale(image, rescale_factor, input_data_format=input_data_format) for image in images]

        if do_normalize:
            images = [
                self.normalize(image, image_mean, image_std, input_data_format=input_data_format) for image in images
            ]
            if annotations is not None:
                annotations = [
                    self.normalize_annotation(annotation, get_image_size(image, input_data_format))
                    for annotation, image in zip(annotations, images)
                ]

        if do_pad:
            # Pads images and returns their mask: {'pixel_values': ..., 'pixel_mask': ...}
            data = self.pad(
                images, return_pixel_mask=True, data_format=data_format, input_data_format=input_data_format
            )
        else:
            images = [
                to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
                for image in images
            ]
            data = {"pixel_values": images}

        encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors)
        if annotations is not None:
            encoded_inputs["labels"] = [
                BatchFeature(annotation, tensor_type=return_tensors) for annotation in annotations
            ]

        return encoded_inputs

    # POSTPROCESSING METHODS - TODO: add support for other frameworks
    def post_process(self, outputs, target_sizes):
        """
        Converts the raw output of [`DeformableDetrForObjectDetection`] into final bounding boxes in (top_left_x,
        top_left_y, bottom_right_x, bottom_right_y) format. Only supports PyTorch.

        Args:
            outputs ([`DeformableDetrObjectDetectionOutput`]):
                Raw outputs of the model.
            target_sizes (`torch.Tensor` of shape `(batch_size, 2)`):
                Tensor containing the size (height, width) of each image of the batch. For evaluation, this must be the
                original image size (before any data augmentation). For visualization, this should be the image size
                after data augment, but before padding.
        Returns:
            `List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
            in the batch as predicted by the model.
        """
        logger.warning_once(
            "`post_process` is deprecated and will be removed in v5 of Transformers, please use"
            " `post_process_object_detection` instead, with `threshold=0.` for equivalent results.",
        )

        out_logits, out_bbox = outputs.logits, outputs.pred_boxes

        if len(out_logits) != len(target_sizes):
            raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the logits")
        if target_sizes.shape[1] != 2:
            raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch")

        prob = out_logits.sigmoid()
        topk_values, topk_indexes = torch.topk(prob.view(out_logits.shape[0], -1), 100, dim=1)
        scores = topk_values
        topk_boxes = torch.div(topk_indexes, out_logits.shape[2], rounding_mode="floor")
        labels = topk_indexes % out_logits.shape[2]
        boxes = center_to_corners_format(out_bbox)
        boxes = torch.gather(boxes, 1, topk_boxes.unsqueeze(-1).repeat(1, 1, 4))

        # and from relative [0, 1] to absolute [0, height] coordinates
        img_h, img_w = target_sizes.unbind(1)
        scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1)
        boxes = boxes * scale_fct[:, None, :]

        results = [{"scores": s, "labels": l, "boxes": b} for s, l, b in zip(scores, labels, boxes)]

        return results

    def post_process_object_detection(
        self, outputs, threshold: float = 0.5, target_sizes: Union[TensorType, List[Tuple]] = None, top_k: int = 100
    ):
        """
        Converts the raw output of [`DeformableDetrForObjectDetection`] into final bounding boxes in (top_left_x,
        top_left_y, bottom_right_x, bottom_right_y) format. Only supports PyTorch.

        Args:
            outputs ([`DetrObjectDetectionOutput`]):
                Raw outputs of the model.
            threshold (`float`, *optional*):
                Score threshold to keep object detection predictions.
            target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*):
                Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
                (height, width) of each image in the batch. If left to None, predictions will not be resized.
            top_k (`int`, *optional*, defaults to 100):
                Keep only top k bounding boxes before filtering by thresholding.

        Returns:
            `List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
            in the batch as predicted by the model.
        """
        out_logits, out_bbox = outputs.logits, outputs.pred_boxes

        if target_sizes is not None:
            if len(out_logits) != len(target_sizes):
                raise ValueError(
                    "Make sure that you pass in as many target sizes as the batch dimension of the logits"
                )

        prob = out_logits.sigmoid()
        prob = prob.view(out_logits.shape[0], -1)
        k_value = min(top_k, prob.size(1))
        topk_values, topk_indexes = torch.topk(prob, k_value, dim=1)
        scores = topk_values
        topk_boxes = torch.div(topk_indexes, out_logits.shape[2], rounding_mode="floor")
        labels = topk_indexes % out_logits.shape[2]
        boxes = center_to_corners_format(out_bbox)
        boxes = torch.gather(boxes, 1, topk_boxes.unsqueeze(-1).repeat(1, 1, 4))

        # and from relative [0, 1] to absolute [0, height] coordinates
        if isinstance(target_sizes, List):
            img_h = torch.Tensor([i[0] for i in target_sizes])
            img_w = torch.Tensor([i[1] for i in target_sizes])
        else:
            img_h, img_w = target_sizes.unbind(1)
        scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device)
        boxes = boxes * scale_fct[:, None, :]

        results = []
        for s, l, b in zip(scores, labels, boxes):
            score = s[s > threshold]
            label = l[s > threshold]
            box = b[s > threshold]
            results.append({"scores": score, "labels": label, "boxes": box})

        return results